Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy.
European Molecular Biology Laboratory (EMBL) Grenoble, 71 Avenue des Martyrs, Grenoble, 38042, France.
Nat Commun. 2020 Jun 5;11(1):2837. doi: 10.1038/s41467-020-16741-4.
Group II introns are ubiquitous self-splicing ribozymes and retrotransposable elements evolutionarily and chemically related to the eukaryotic spliceosome, with potential applications as gene-editing tools. Recent biochemical and structural data have captured the intron in multiple conformations at different stages of catalysis. Here, we employ enzymatic assays, X-ray crystallography, and molecular simulations to resolve the spatiotemporal location and function of conformational changes occurring between the first and the second step of splicing. We show that the first residue of the highly-conserved catalytic triad is protonated upon 5'-splice-site scission, promoting a reversible structural rearrangement of the active site (toggling). Protonation and active site dynamics induced by the first step of splicing facilitate the progression to the second step. Our insights into the mechanism of group II intron splicing parallels functional data on the spliceosome, thus reinforcing the notion that these evolutionarily-related molecular machines share the same enzymatic strategy.
内含子 II 是普遍存在的自我剪接核酶和 retrotransposable 元件,在进化和化学上与真核剪接体有关,具有作为基因编辑工具的潜在应用。最近的生化和结构数据捕获了不同催化阶段的内含子的多种构象。在这里,我们使用酶促测定、X 射线晶体学和分子模拟来解决剪接的第一步和第二步之间发生的构象变化的时空位置和功能。我们表明,高度保守的催化三联体的第一个残基在 5'剪接位点断裂时被质子化,促进了活性位点的可逆结构重排(切换)。第一步剪接引起的质子化和活性位点动力学促进了第二步的进行。我们对内含子 II 剪接机制的见解与剪接体的功能数据相平行,从而强化了这些进化相关的分子机器共享相同的酶促策略的观点。