School of Systems and Enterprises, Stevens Institute of Technology, NJ, 07030, Hoboken, USA.
Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, USA.
Appl Ergon. 2022 May;101:103708. doi: 10.1016/j.apergo.2022.103708. Epub 2022 Feb 8.
A gap exists between the capabilities of artificial intelligence (AI) technologies in healthcare and the extent to which clinicians are willing to adopt these systems. Our study addressed this gap by leveraging 'expectancy-value theory' and 'modified extended unified theory of acceptance and use of technology' to understand why clinicians may be willing or unwilling to adopt AI systems. The study looked at the 'expectancy,' 'trust,' and 'perceptions' of clinicians related to their intention of using an AI-based decision support system known as the Blood Utilization Calculator (BUC). The study used purposive sampling to recruit BUC users and administered a validated online survey from a large hospital system in the Midwest in 2021. The findings captured the significant effect of 'perceived risk' (negatively) and 'expectancy' (positively) on clinicians' 'trust' in BUC. 'Trust' was also found to mediate the relationship of 'perceived risk' and 'expectancy' with the 'intent to use BUC.' The study's findings established pathways for future research and have implications on factors influencing BUC use.
人工智能 (AI) 技术在医疗保健中的应用能力与临床医生愿意采用这些系统的程度之间存在差距。我们的研究利用“期望价值理论”和“修正的扩展技术接受和使用统一理论”来理解为什么临床医生可能愿意或不愿意采用 AI 系统。该研究着眼于与他们使用基于人工智能的决策支持系统(称为血液利用计算器 (BUC))的意图相关的临床医生的“期望”、“信任”和“感知”。该研究采用目的性抽样招募了 BUC 用户,并于 2021 年在中西部的一家大型医院系统中进行了一项经过验证的在线调查。研究结果捕捉到了“感知风险”(负向)和“期望”(正向)对临床医生对 BUC 的“信任”的显著影响。还发现“信任”中介了“感知风险”和“期望”与“使用 BUC 的意图”之间的关系。该研究的结果为未来的研究建立了途径,并对影响 BUC 使用的因素具有启示意义。
Front Digit Health. 2022-8-16
J Med Internet Res. 2020-6-19
BMC Med Inform Decis Mak. 2021-7-20
J Med Internet Res. 2024-10-30
Future Healthc J. 2024-8-17
Front Pharmacol. 2023-11-14
J Med Internet Res. 2023-10-19