Suppr超能文献

化学机制在声化学模拟中的重要性。

The importance of chemical mechanisms in sonochemical modelling.

机构信息

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.

Chemical Kinetics Laboratory, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary.

出版信息

Ultrason Sonochem. 2022 Feb;83:105925. doi: 10.1016/j.ultsonch.2022.105925. Epub 2022 Jan 22.

Abstract

A state-of-the-art chemical mechanism is introduced to properly describe chemical processes inside a harmonically excited spherical bubble placed in water and saturated with oxygen. The model uses up-to-date Arrhenius-constants, collision efficiency factors and takes into account the pressure-dependency of the reactions. Duplicated reactions are also applied, and the backward reactions rates are calculated via suitable thermodynamic equilibrium conditions. Our proposed reaction mechanism is compared to three other chemical models that are widely applied in sonochemistry and lack most of the aforementioned modelling issues. In the governing equations, only the reaction mechanisms are compared, all other parts of the models are identical. The chemical yields obtained by the different modelling techniques are taken at the maximum expansion of the bubble. A brief parameter study is made with different pressure amplitudes and driving frequencies at two equilibrium bubble sizes. The results show that due to the deficiencies of the former reaction mechanisms employed in the sonochemical literature, several orders of magnitude differences of the chemical yields can be observed. In addition, the trends along a control parameter can also have dissimilar characteristics that might lead to false optimal operating conditions. Consequently, an up-to-date and accurate chemical model is crucial to make qualitatively and quantitatively correct conclusions in sonochemistry.

摘要

引入了一种最先进的化学机制,以正确描述放置在水中并充满氧气的谐调激发球形气泡内部的化学过程。该模型使用最新的阿仑尼乌斯常数、碰撞效率因子,并考虑了反应的压力依赖性。还应用了重复反应,并通过适当的热力学平衡条件计算了反向反应速率。我们提出的反应机制与另外三种广泛应用于声化学且缺乏上述大部分建模问题的化学模型进行了比较。在控制方程中,仅比较了反应机制,模型的所有其他部分都相同。通过不同的建模技术获得的化学产率是在气泡最大膨胀时取的。在两个平衡气泡尺寸下,对不同的压力幅度和驱动频率进行了简要的参数研究。结果表明,由于声化学文献中采用的前反应机制存在缺陷,化学产率可能会有几个数量级的差异。此外,沿控制参数的趋势也可能具有不同的特征,这可能导致错误的最佳操作条件。因此,在声化学中做出定性和定量正确的结论,至关重要的是要有一个最新的、准确的化学模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45f6/8841831/a8a45da1f466/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验