Plavelil Nisha, Appu Abhilash P, Gopal K C, Mondal Avisek, Perkins Neil, Mukherjee Anil B
Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America.
Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America.
Neurobiol Dis. 2025 Jun 1;209:106890. doi: 10.1016/j.nbd.2025.106890. Epub 2025 Mar 28.
Lysosomal storage disorders (LSDs) represent 70 inherited metabolic diseases, in most of which neurodegeneration is a devastating manifestation. The CLN1 disease is a fatal neurodegenerative LSD, caused by inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1). S-palmitoylation, a reversable posttranslational modification by saturated fatty acids (generally palmitate) facilitates endosomal trafficking of many proteins, especially in the brain. While palmitoyl-acyltransferases (called ZDHHCs) catalyze S-palmitoylation, depalmitoylation is mediated by palmitoyl-protein thioesterases (PPTs). We previously reported that in Cln1 mice, which mimic human CLN1-disease, endoplasmic reticulum (ER)-stress leads to unfolded protein response (UPR) contributing to neurodegeneration. However, the mechanism underlying ER-stress has remained elusive. The anterograde (ER to Golgi) protein-trafficking is mediated via COPII (coat protein complex II) vesicles, whereas the retrograde transport (Golgi to ER) is mediated by COPI vesicles. We hypothesized that dysregulated anterograde protein-trafficking causing stagnation of proteins in the ER leads to ER-stress in Cln1 mice. We found that the levels of five COPII vesicle-associated proteins (i.e. Sar1, Sec23, Sec24, Sec13 and Sec31) are significantly higher in the ER-fractions of cortical tissues from Cln1 mice compared with those from their WT littermates. Remarkably, all COPII proteins, except Sec13, undergo S-palmitoylation. Moreover, CLN8, a Batten disease-protein, requires dynamic S-palmitoylation (palmitoylation-depalmitoylation) for ER-Golgi trafficking. Intriguingly, Ppt1-deficiency in Cln1 mice impairs ER-Golgi trafficking of Cln8-protein along with several other COPII-associated proteins. We propose that impaired anterograde trafficking causes excessive accumulation of proteins in the ER causing ER-stress and UPR contributing to neurodegeneration in CLN1 disease.
溶酶体贮积症(LSDs)是70种遗传性代谢疾病,其中大多数疾病中神经退行性变是一种毁灭性的表现。CLN1病是一种致命的神经退行性LSD,由编码棕榈酰蛋白硫酯酶-1(PPT1)的CLN1基因的失活突变引起。S-棕榈酰化是一种由饱和脂肪酸(通常是棕榈酸)进行的可逆翻译后修饰,它促进许多蛋白质的内体运输,尤其是在大脑中。虽然棕榈酰酰基转移酶(称为ZDHHCs)催化S-棕榈酰化,但去棕榈酰化由棕榈酰蛋白硫酯酶(PPTs)介导。我们之前报道过,在模拟人类CLN1病的Cln1小鼠中,内质网(ER)应激导致未折叠蛋白反应(UPR),从而促进神经退行性变。然而,ER应激背后的机制仍然难以捉摸。顺行(从ER到高尔基体)蛋白质运输由COPII(衣被蛋白复合物II)囊泡介导,而逆行运输(从高尔基体到ER)由COPI囊泡介导。我们假设顺行蛋白质运输失调导致蛋白质在ER中停滞,从而导致Cln1小鼠出现ER应激。我们发现,与野生型同窝小鼠相比,Cln1小鼠皮质组织的ER组分中五种COPII囊泡相关蛋白(即Sar1、Sec23、Sec24、Sec13和Sec31)的水平显著更高。值得注意的是,除了Sec13之外,所有COPII蛋白都经历S-棕榈酰化。此外,一种巴顿病蛋白CLN8需要动态S-棕榈酰化(棕榈酰化-去棕榈酰化)来进行ER-高尔基体运输。有趣的是,Cln1小鼠中的Ppt1缺陷会损害Cln8蛋白以及其他几种COPII相关蛋白的ER-高尔基体运输。我们提出,顺行运输受损导致蛋白质在ER中过度积累,从而引起ER应激和UPR,促进CLN1病中的神经退行性变。