Suppr超能文献

人类染色质调控活性与非活性状态下纳米尺度组织的差异。

Differences in nanoscale organization of regulatory active and inactive human chromatin.

作者信息

Brandstetter Katharina, Zülske Tilo, Ragoczy Tobias, Hörl David, Guirao-Ortiz Miguel, Steinek Clemens, Barnes Toby, Stumberger Gabriela, Schwach Jonathan, Haugen Eric, Rynes Eric, Korber Philipp, Stamatoyannopoulos John A, Leonhardt Heinrich, Wedemann Gero, Harz Hartmann

机构信息

Human Biology & BioImaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Munich, Germany.

Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.

出版信息

Biophys J. 2022 Mar 15;121(6):977-990. doi: 10.1016/j.bpj.2022.02.009. Epub 2022 Feb 10.

Abstract

Methodological advances in conformation capture techniques have fundamentally changed our understanding of chromatin architecture. However, the nanoscale organization of chromatin and its cell-to-cell variance are less studied. Analyzing genome-wide data from 733 human cell and tissue samples, we identified 2 prototypical regions that exhibit high or absent hypersensitivity to deoxyribonuclease I, respectively. These regulatory active or inactive regions were examined in the lymphoblast cell line K562 by using high-throughput super-resolution microscopy. In both regions, we systematically measured the physical distance of 2 fluorescence in situ hybridization spots spaced by only 5 kb of DNA. Unexpectedly, the resulting distance distributions range from very compact to almost elongated configurations of more than 200-nm length for both the active and inactive regions. Monte Carlo simulations of a coarse-grained model of these chromatin regions based on published data of nucleosome occupancy in K562 cells were performed to understand the underlying mechanisms. There was no parameter set for the simulation model that can explain the microscopically measured distance distributions. Obviously, the chromatin state given by the strength of internucleosomal interaction, nucleosome occupancy, or amount of histone H1 differs from cell to cell, which results in the observed broad distance distributions. This large variability was not expected, especially in inactive regions. The results for the mechanisms for different distance distributions on this scale are important for understanding the contacts that mediate gene regulation. Microscopic measurements show that the inactive region investigated here is expected to be embedded in a more compact chromatin environment. The simulation results of this region require an increase in the strength of internucleosomal interactions. It may be speculated that the higher density of chromatin is caused by the increased internucleosomal interaction strength.

摘要

构象捕获技术的方法学进展从根本上改变了我们对染色质结构的理解。然而,染色质的纳米级组织及其细胞间差异的研究较少。通过分析来自733个人类细胞和组织样本的全基因组数据,我们确定了2个原型区域,它们分别对脱氧核糖核酸酶I表现出高敏感性或无敏感性。通过使用高通量超分辨率显微镜在淋巴母细胞系K562中检查了这些调控活性或非活性区域。在这两个区域中,我们系统地测量了仅间隔5 kb DNA的两个荧光原位杂交点的物理距离。出乎意料的是,活性和非活性区域的所得距离分布范围从非常紧凑到几乎超过200 nm长度的伸长构型。基于K562细胞中核小体占有率的已发表数据,对这些染色质区域的粗粒度模型进行了蒙特卡罗模拟,以了解其潜在机制。模拟模型没有可以解释微观测量距离分布的参数集。显然,由核小体间相互作用强度、核小体占有率或组蛋白H1量给出的染色质状态在细胞间有所不同,这导致观察到的广泛距离分布。这种大的变异性是出乎意料的,尤其是在非活性区域。在此尺度上不同距离分布机制的结果对于理解介导基因调控的接触很重要。显微镜测量表明,此处研究的非活性区域预计嵌入在更紧凑的染色质环境中。该区域的模拟结果需要增加核小体间相互作用的强度。可以推测,染色质的更高密度是由核小体间相互作用强度增加引起的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93c3/8943813/b08c1dd41924/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验