Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
Biomedical Computer Vision Group, BioQuant, IPMB, Heidelberg University, Heidelberg, Germany.
Histochem Cell Biol. 2024 Jul;162(1-2):109-131. doi: 10.1007/s00418-024-02285-x. Epub 2024 May 17.
The dynamics of DNA in the cell nucleus plays a role in cellular processes and fates but the interplay of DNA mobility with the hierarchical levels of DNA organization is still underexplored. Here, we made use of DNA replication to directly label genomic DNA in an unbiased genome-wide manner. This was followed by live-cell time-lapse microscopy of the labeled DNA combining imaging at different resolutions levels simultaneously and allowing one to trace DNA motion across organization levels within the same cells. Quantification of the labeled DNA segments at different microscopic resolution levels revealed sizes comparable to the ones reported for DNA loops using 3D super-resolution microscopy, topologically associated domains (TAD) using 3D widefield microscopy, and also entire chromosomes. By employing advanced chromatin tracking and image registration, we discovered that DNA exhibited higher mobility at the individual loop level compared to the TAD level and even less at the chromosome level. Additionally, our findings indicate that chromatin movement, regardless of the resolution, slowed down during the S phase of the cell cycle compared to the G1/G2 phases. Furthermore, we found that a fraction of DNA loops and TADs exhibited directed movement with the majority depicting constrained movement. Our data also indicated spatial mobility differences with DNA loops and TADs at the nuclear periphery and the nuclear interior exhibiting lower velocity and radius of gyration than the intermediate locations. On the basis of these insights, we propose that there is a link between DNA mobility and its organizational structure including spatial distribution, which impacts cellular processes.
细胞核内 DNA 的动力学在细胞过程和命运中发挥作用,但 DNA 流动性与 DNA 组织的层次结构的相互作用仍未得到充分探索。在这里,我们利用 DNA 复制以无偏倚的全基因组方式直接标记基因组 DNA。然后,我们对标记的 DNA 进行活细胞延时显微镜观察,同时在不同分辨率水平进行成像,从而可以在同一细胞内追踪 DNA 在组织层次结构中的运动。在不同的微观分辨率水平下对标记的 DNA 片段进行定量分析,发现其大小与使用 3D 超分辨率显微镜报告的 DNA 环、使用 3D 宽场显微镜报告的拓扑相关结构域(TAD)以及整个染色体的大小相当。通过采用先进的染色质追踪和图像配准技术,我们发现 DNA 在单个环水平上的流动性高于 TAD 水平,甚至低于染色体水平。此外,我们的研究结果表明,无论分辨率如何,染色质运动在细胞周期的 S 期都比 G1/G2 期慢。此外,我们发现一部分 DNA 环和 TAD 呈现定向运动,而大部分呈现受限运动。我们的数据还表明,DNA 环和 TAD 在核周和核内的空间流动性与中间位置相比具有较低的速度和回转半径。基于这些发现,我们提出 DNA 流动性与其组织结构之间存在联系,包括空间分布,这会影响细胞过程。