Suppr超能文献

审计人工智能审计师:评估高风险人工智能预测模型中的公平性和偏差的框架。

Auditing the AI auditors: A framework for evaluating fairness and bias in high stakes AI predictive models.

作者信息

Landers Richard N, Behrend Tara S

机构信息

Department of Psychology.

Department of Psychological Sciences.

出版信息

Am Psychol. 2023 Jan;78(1):36-49. doi: 10.1037/amp0000972. Epub 2022 Feb 14.

Abstract

Researchers, governments, ethics watchdogs, and the public are increasingly voicing concerns about unfairness and bias in artificial intelligence (AI)-based decision tools. Psychology's more-than-a-century of research on the measurement of psychological traits and the prediction of human behavior can benefit such conversations, yet psychological researchers often find themselves excluded due to mismatches in terminology, values, and goals across disciplines. In the present paper, we begin to build a shared interdisciplinary understanding of AI fairness and bias by first presenting three major lenses, which vary in focus and prototypicality by discipline, from which to consider relevant issues: (a) individual attitudes, (b) legality, ethicality, and morality, and (c) embedded meanings within technical domains. Using these lenses, we next present as a standardized approach for evaluating the fairness and bias of AI systems that make predictions about humans across disciplinary perspectives. We present 12 crucial components to audits across three categories: (a) components related to AI models in terms of their source data, design, development, features, processes, and outputs, (b) components related to how information about models and their applications are presented, discussed, and understood from the perspectives of those employing the algorithm, those affected by decisions made using its predictions, and third-party observers, and (c) meta-components that must be considered across all other auditing components, including cultural context, respect for persons, and the integrity of individual research designs used to support all model developer claims. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

研究人员、政府、伦理监督机构和公众越来越多地表达了对基于人工智能(AI)的决策工具中存在的不公平和偏见的担忧。心理学在心理特质测量和人类行为预测方面长达一个多世纪的研究可以为这类讨论提供帮助,然而,由于各学科在术语、价值观和目标上的不匹配,心理学研究人员常常发现自己被排除在外。在本文中,我们首先提出三个主要视角,各学科在关注点和典型性上有所不同,以此开始构建对人工智能公平性和偏见的跨学科共同理解,用于考量相关问题:(a)个体态度,(b)合法性、伦理和道德,以及(c)技术领域内的内在含义。利用这些视角,我们接下来提出一种标准化方法,用于跨学科视角评估对人类进行预测的人工智能系统的公平性和偏见。我们提出了审核的12个关键要素,分为三类:(a)与人工智能模型相关的要素,涉及模型的源数据、设计、开发、特征、过程和输出;(b)与如何从算法使用者、受基于模型预测所做决策影响的人以及第三方观察者的角度呈现、讨论和理解模型及其应用信息相关的要素;(c)所有其他审核要素都必须考虑的元要素,包括文化背景、对人的尊重以及用于支持所有模型开发者主张的个体研究设计的完整性。(《心理学文摘数据库记录》(c)2023美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验