Suppr超能文献

使用真实世界数据时公平机器学习技术的范围综述。

A scoping review of fair machine learning techniques when using real-world data.

机构信息

Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.

Pharmaceutical Outcomes & Policy, University of Florida, Gainesville, FL, USA.

出版信息

J Biomed Inform. 2024 Mar;151:104622. doi: 10.1016/j.jbi.2024.104622. Epub 2024 Mar 6.

Abstract

OBJECTIVE

The integration of artificial intelligence (AI) and machine learning (ML) in health care to aid clinical decisions is widespread. However, as AI and ML take important roles in health care, there are concerns about AI and ML associated fairness and bias. That is, an AI tool may have a disparate impact, with its benefits and drawbacks unevenly distributed across societal strata and subpopulations, potentially exacerbating existing health inequities. Thus, the objectives of this scoping review were to summarize existing literature and identify gaps in the topic of tackling algorithmic bias and optimizing fairness in AI/ML models using real-world data (RWD) in health care domains.

METHODS

We conducted a thorough review of techniques for assessing and optimizing AI/ML model fairness in health care when using RWD in health care domains. The focus lies on appraising different quantification metrics for accessing fairness, publicly accessible datasets for ML fairness research, and bias mitigation approaches.

RESULTS

We identified 11 papers that are focused on optimizing model fairness in health care applications. The current research on mitigating bias issues in RWD is limited, both in terms of disease variety and health care applications, as well as the accessibility of public datasets for ML fairness research. Existing studies often indicate positive outcomes when using pre-processing techniques to address algorithmic bias. There remain unresolved questions within the field that require further research, which includes pinpointing the root causes of bias in ML models, broadening fairness research in AI/ML with the use of RWD and exploring its implications in healthcare settings, and evaluating and addressing bias in multi-modal data.

CONCLUSION

This paper provides useful reference material and insights to researchers regarding AI/ML fairness in real-world health care data and reveals the gaps in the field. Fair AI/ML in health care is a burgeoning field that requires a heightened research focus to cover diverse applications and different types of RWD.

摘要

目的

人工智能(AI)和机器学习(ML)在医疗保健中的融合,有助于辅助临床决策,这一应用已十分广泛。然而,随着 AI 和 ML 在医疗保健领域发挥着重要作用,人们开始关注 AI 和 ML 相关的公平性和偏见问题。也就是说,AI 工具可能会产生不同的影响,其优势和劣势在社会阶层和亚人群中分布不均,从而可能加剧现有的健康不平等现象。因此,本研究的目的是总结现有文献,并确定在使用真实世界数据(RWD)解决 AI/ML 模型中的算法偏差和优化公平性的主题方面存在的差距。

方法

我们对使用 RWD 在医疗保健领域中评估和优化 AI/ML 模型公平性的技术进行了全面审查。重点在于评估用于评估公平性的不同量化指标、用于 ML 公平性研究的公共数据集以及偏差缓解方法。

结果

我们确定了 11 篇专注于优化医疗保健应用中模型公平性的论文。目前关于减轻 RWD 中偏差问题的研究在疾病种类和医疗保健应用方面都很有限,同时用于 ML 公平性研究的公共数据集也很有限。现有研究表明,在使用预处理技术解决算法偏差问题时,通常会产生积极的结果。该领域仍存在一些悬而未决的问题,需要进一步研究,包括确定 ML 模型中偏差的根本原因、使用 RWD 拓宽 AI/ML 中的公平性研究并探索其在医疗保健环境中的影响,以及评估和解决多模态数据中的偏差问题。

结论

本文为研究人员提供了有关真实世界医疗保健数据中 AI/ML 公平性的有用参考材料和见解,并揭示了该领域的差距。医疗保健中的公平 AI/ML 是一个新兴领域,需要更加关注不同的应用和不同类型的 RWD,以覆盖更广泛的领域。

相似文献

1
A scoping review of fair machine learning techniques when using real-world data.
J Biomed Inform. 2024 Mar;151:104622. doi: 10.1016/j.jbi.2024.104622. Epub 2024 Mar 6.
2
Applying AI to Structured Real-World Data for Pharmacovigilance Purposes: Scoping Review.
J Med Internet Res. 2024 Dec 30;26:e57824. doi: 10.2196/57824.
3
Multidisciplinary considerations of fairness in medical AI: A scoping review.
Int J Med Inform. 2023 Oct;178:105175. doi: 10.1016/j.ijmedinf.2023.105175. Epub 2023 Aug 8.
4
Fairness of artificial intelligence in healthcare: review and recommendations.
Jpn J Radiol. 2024 Jan;42(1):3-15. doi: 10.1007/s11604-023-01474-3. Epub 2023 Aug 4.
5
Mitigating Algorithmic Bias in AI-Driven Cardiovascular Imaging for Fairer Diagnostics.
Diagnostics (Basel). 2024 Nov 27;14(23):2675. doi: 10.3390/diagnostics14232675.
6
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.
7
Artificial Intelligence Applications to Measure Food and Nutrient Intakes: Scoping Review.
J Med Internet Res. 2024 Nov 28;26:e54557. doi: 10.2196/54557.
9
Evaluation and Mitigation of Racial Bias in Clinical Machine Learning Models: Scoping Review.
JMIR Med Inform. 2022 May 31;10(5):e36388. doi: 10.2196/36388.
10
"Shortcuts" Causing Bias in Radiology Artificial Intelligence: Causes, Evaluation, and Mitigation.
J Am Coll Radiol. 2023 Sep;20(9):842-851. doi: 10.1016/j.jacr.2023.06.025. Epub 2023 Jul 27.

引用本文的文献

1
A scoping review and evidence gap analysis of clinical AI fairness.
NPJ Digit Med. 2025 Jun 14;8(1):360. doi: 10.1038/s41746-025-01667-2.
2
Exploring trade-offs in equitable stroke risk prediction with parity-constrained and race-free models.
Artif Intell Med. 2025 Jun;164:103130. doi: 10.1016/j.artmed.2025.103130. Epub 2025 Apr 10.
4
The doctor will polygraph you now.
Npj Health Syst. 2024;1(1):1. doi: 10.1038/s44401-024-00001-4. Epub 2024 Dec 5.
6
Simulated misuse of large language models and clinical credit systems.
NPJ Digit Med. 2024 Nov 11;7(1):317. doi: 10.1038/s41746-024-01306-2.
8
Identification and Validation of IFI44 as a Novel Biomarker for Primary Sjögren's Syndrome.
J Inflamm Res. 2024 Aug 28;17:5723-5740. doi: 10.2147/JIR.S477490. eCollection 2024.
9
Evolution of digital twins in precision health applications: a scoping review study.
Res Sq. 2024 Aug 7:rs.3.rs-4612942. doi: 10.21203/rs.3.rs-4612942/v1.

本文引用的文献

1
Early prediction of Alzheimer's disease and related dementias using real-world electronic health records.
Alzheimers Dement. 2023 Aug;19(8):3506-3518. doi: 10.1002/alz.12967. Epub 2023 Feb 23.
2
Bias in machine learning models can be significantly mitigated by careful training: Evidence from neuroimaging studies.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2211613120. doi: 10.1073/pnas.2211613120. Epub 2023 Jan 30.
3
Fairness in the prediction of acute postoperative pain using machine learning models.
Front Digit Health. 2023 Jan 11;4:970281. doi: 10.3389/fdgth.2022.970281. eCollection 2022.
4
Evaluating and mitigating bias in machine learning models for cardiovascular disease prediction.
J Biomed Inform. 2023 Feb;138:104294. doi: 10.1016/j.jbi.2023.104294. Epub 2023 Jan 24.
7
Data-driven identification of post-acute SARS-CoV-2 infection subphenotypes.
Nat Med. 2023 Jan;29(1):226-235. doi: 10.1038/s41591-022-02116-3. Epub 2022 Dec 1.
8
Improving Fairness in the Prediction of Heart Failure Length of Stay and Mortality by Integrating Social Determinants of Health.
Circ Heart Fail. 2022 Nov;15(11):e009473. doi: 10.1161/CIRCHEARTFAILURE.122.009473. Epub 2022 Nov 15.
9
A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction.
Front Bioinform. 2022 Jun 27;2:927312. doi: 10.3389/fbinf.2022.927312. eCollection 2022.
10
Algorithmic fairness in computational medicine.
EBioMedicine. 2022 Oct;84:104250. doi: 10.1016/j.ebiom.2022.104250. Epub 2022 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验