Nassar Mahmoud M A, Tarboush Belal J Abu, Alzebdeh Khalid I, Al-Hinai Nasr, Pervez Tasneem
College of Applied Professions, Palestine Polytechnic University, Wadi Alhareya, Hebron P.O. Box 198, Palestine.
Department of Mechanical and Industrial Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khod 123, Oman.
Polymers (Basel). 2022 Feb 7;14(3):629. doi: 10.3390/polym14030629.
Among the critical issues dictating bio-composite performance is the interfacial bonding between the natural fibers and polymer matrix. In this regard, this article presents new synthesis routes comprising the treatment and functionalization of both date palm powder (DPP) filler and a polypropylene (PP) matrix to enhance filler-polymer adhesion in the newly developed bio-composites. Specifically, four bio-composite forms are considered: untreated DPP filled PP (DPP-UT/PP), treated DPP filled PP (DPP-T/PP), treated DPP filled functionalized PP using 2-isocyanatoethyl methacrylate (DPP-T/PP--IEM), and treated and functionalized DPP using 4-toluenesulfonyl chloride filled functionalized PP using 2-acrylamide ((DPP-T)--TsCl/PP--AcAm). The functional groups created on the surface of synthesized PP--IEM react with activated hydroxyl groups attached to the filler, resulting in chemical crosslinking between both components. Similarly, the reaction of TsCl with NH chemical groups residing on the mating surfaces of the filler and polymer generates an amide bond in the interface region. Fourier transform infrared spectroscopy (FTIR) is used to confirm the successful coupling between the filler and polypropylene matrix after applying the treatment and functionalization schemes. Owing to the introduced crosslinking, the DPP-T/PP--IEM bio-composite exhibits the best mechanical properties as compared to the neat polymer, unfunctionalized polymer-based bio-composite, and (DPP-T)--TsCl/PP--AcAm counterpart. The applied compatibilizers assist in reducing the water uptake of the manufactured bio-composites, increasing their durability.
决定生物复合材料性能的关键问题之一是天然纤维与聚合物基体之间的界面结合。在这方面,本文提出了新的合成路线,包括对椰枣粉(DPP)填料和聚丙烯(PP)基体进行处理和功能化,以增强新开发的生物复合材料中填料与聚合物的粘附力。具体而言,考虑了四种生物复合材料形式:未处理的DPP填充PP(DPP-UT/PP)、处理过的DPP填充PP(DPP-T/PP)、使用甲基丙烯酸2-异氰酸酯基乙酯对处理过的DPP填充功能化PP(DPP-T/PP--IEM),以及使用对甲苯磺酰氯处理和功能化DPP并使用2-丙烯酰胺填充功能化PP((DPP-T)--TsCl/PP--AcAm)。合成的PP--IEM表面产生的官能团与附着在填料上的活化羟基反应,导致两种组分之间发生化学交联。同样,TsCl与填料和聚合物配合表面上的NH化学基团反应,在界面区域生成酰胺键。在应用处理和功能化方案后,使用傅里叶变换红外光谱(FTIR)来确认填料与聚丙烯基体之间成功偶联。由于引入了交联,与纯聚合物、未功能化的聚合物基生物复合材料以及(DPP-T)--TsCl/PP--AcAm对应物相比,DPP-T/PP--IEM生物复合材料表现出最佳的机械性能。所应用的增容剂有助于降低制造的生物复合材料的吸水率,提高其耐久性。