Suppr超能文献

二硒化锡(SnSe)范德华半导体:表面化学反应性、环境稳定性、化学和光学传感器

Tin Diselenide (SnSe) Van der Waals Semiconductor: Surface Chemical Reactivity, Ambient Stability, Chemical and Optical Sensors.

作者信息

D'Olimpio Gianluca, Farias Daniel, Kuo Chia-Nung, Ottaviano Luca, Lue Chin Shan, Boukhvalov Danil W, Politano Antonio

机构信息

Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila, Italy.

Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

出版信息

Materials (Basel). 2022 Feb 2;15(3):1154. doi: 10.3390/ma15031154.

Abstract

Tin diselenide (SnSe) is a layered semiconductor with broad application capabilities in the fields of energy storage, photocatalysis, and photodetection. Here, we correlate the physicochemical properties of this van der Waals semiconductor to sensing applications for detecting chemical species (chemosensors) and millimeter waves (terahertz photodetectors) by combining experiments of high-resolution electron energy loss spectroscopy and X-ray photoelectron spectroscopy with density functional theory. The response of the pristine, defective, and oxidized SnSe surface towards H, HO, HS, NH, and NO analytes was investigated. Furthermore, the effects of the thickness were assessed for monolayer, bilayer, and bulk samples of SnSe. The formation of a sub-nanometric SnO skin over the SnSe surface (self-assembled SnO/SnSe heterostructure) corresponds to a strong adsorption of all analytes. The formation of non-covalent bonds between SnO and analytes corresponds to an increase of the magnitude of the transferred charge. The theoretical model nicely fits experimental data on gas response to analytes, validating the SnO/SnSe heterostructure as a suitable playground for sensing of noxious gases, with sensitivities of 0.43, 2.13, 0.11, 1.06 [ppm] for H, HS, NH, and NO respectively. The corresponding limit of detection is 5 ppm, 10 ppb, 250 ppb, and 400 ppb for H, HS, NH, and NO respectively. Furthermore, SnSe-based sensors are also suitable for fast large-area imaging applications at room temperature for millimeter waves in the THz range.

摘要

二硒化锡(SnSe)是一种层状半导体,在能量存储、光催化和光电探测领域具有广泛的应用能力。在此,我们通过将高分辨率电子能量损失谱和X射线光电子能谱实验与密度泛函理论相结合,将这种范德华半导体的物理化学性质与用于检测化学物质(化学传感器)和毫米波(太赫兹光电探测器)的传感应用相关联。研究了原始、有缺陷和氧化的SnSe表面对H、HO、HS、NH和NO分析物的响应。此外,还评估了SnSe单层、双层和体相样品厚度的影响。SnSe表面形成的亚纳米级SnO表层(自组装SnO/SnSe异质结构)对应于所有分析物的强吸附。SnO与分析物之间非共价键的形成对应于转移电荷量的增加。该理论模型很好地拟合了气体对分析物响应的实验数据,验证了SnO/SnSe异质结构作为检测有害气体的合适平台,对H、HS、NH和NO的灵敏度分别为0.43、2.13、0.11、1.06[ppm]。H、HS、NH和NO的相应检测限分别为5 ppm、10 ppb、250 ppb和400 ppb。此外,基于SnSe的传感器也适用于在室温下对太赫兹范围内的毫米波进行快速大面积成像应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc9/8838464/e6f9c1f348cb/materials-15-01154-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验