Suppr超能文献

用于溶液可加工热电材料的二硒化锡分子前驱体。

Tin Diselenide Molecular Precursor for Solution-Processable Thermoelectric Materials.

作者信息

Zhang Yu, Liu Yu, Lim Khak Ho, Xing Congcong, Li Mengyao, Zhang Ting, Tang Pengyi, Arbiol Jordi, Llorca Jordi, Ng Ka Ming, Ibáñez Maria, Guardia Pablo, Prato Mirko, Cadavid Doris, Cabot Andreu

机构信息

Catalonia Energy Research Institute-IREC, Sant Adria de Besòs, 08930, Barcelona, Spain.

Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Angew Chem Int Ed Engl. 2018 Dec 21;57(52):17063-17068. doi: 10.1002/anie.201809847. Epub 2018 Nov 25.

Abstract

In the present work, we detail a fast and simple solution-based method to synthesize hexagonal SnSe nanoplates (NPLs) and their use to produce crystallographically textured SnSe nanomaterials. We also demonstrate that the same strategy can be used to produce orthorhombic SnSe nanostructures and nanomaterials. NPLs are grown through a screw dislocation-driven mechanism. This mechanism typically results in pyramidal structures, but we demonstrate here that the growth from multiple dislocations results in flower-like structures. Crystallographically textured SnSe bulk nanomaterials obtained from the hot pressing of these SnSe structures display highly anisotropic charge and heat transport properties and thermoelectric (TE) figures of merit limited by relatively low electrical conductivities. To improve this parameter, SnSe NPLs are blended here with metal nanoparticles. The electrical conductivities of the blends are significantly improved with respect to bare SnSe NPLs, what translates into a three-fold increase of the TE Figure of merit, reaching unprecedented ZT values up to 0.65.

摘要

在本工作中,我们详细介绍了一种基于溶液的快速简便方法来合成六方相SnSe纳米片(NPLs),并将其用于制备具有晶体织构的SnSe纳米材料。我们还证明了相同的策略可用于制备正交相SnSe纳米结构和纳米材料。NPLs通过螺旋位错驱动机制生长。这种机制通常会导致金字塔形结构,但我们在此证明,多个位错的生长会导致花状结构。通过对这些SnSe结构进行热压获得的具有晶体织构的SnSe块状纳米材料表现出高度各向异性的电荷和热传输特性,以及受相对较低电导率限制的热电(TE)优值。为了改善这一参数,本文将SnSe NPLs与金属纳米颗粒混合。与纯SnSe NPLs相比,混合物的电导率显著提高,这使得TE优值提高了三倍,达到了高达0.65的前所未有的ZT值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验