Suppr超能文献

基于微调卷积神经网络的实时手势识别。

Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network.

机构信息

Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela 769008, Odisha, India.

Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland.

出版信息

Sensors (Basel). 2022 Jan 18;22(3):706. doi: 10.3390/s22030706.

Abstract

Hand gesture recognition is one of the most effective modes of interaction between humans and computers due to being highly flexible and user-friendly. A real-time hand gesture recognition system should aim to develop a user-independent interface with high recognition performance. Nowadays, convolutional neural networks (CNNs) show high recognition rates in image classification problems. Due to the unavailability of large labeled image samples in static hand gesture images, it is a challenging task to train deep CNN networks such as AlexNet, VGG-16 and ResNet from scratch. Therefore, inspired by CNN performance, an end-to-end fine-tuning method of a pre-trained CNN model with score-level fusion technique is proposed here to recognize hand gestures in a dataset with a low number of gesture images. The effectiveness of the proposed technique is evaluated using leave-one-subject-out cross-validation (LOO CV) and regular CV tests on two benchmark datasets. A real-time American sign language (ASL) recognition system is developed and tested using the proposed technique.

摘要

手势识别是人与计算机之间最有效的交互方式之一,因为它具有高度的灵活性和用户友好性。实时手势识别系统应该旨在开发具有高识别性能的用户独立接口。如今,卷积神经网络 (CNN) 在图像分类问题中表现出很高的识别率。由于静态手势图像中缺乏大量标记的图像样本,因此从零开始训练深度 CNN 网络(如 AlexNet、VGG-16 和 ResNet)是一项具有挑战性的任务。因此,受 CNN 性能的启发,本文提出了一种基于分数级融合技术的预训练 CNN 模型的端到端微调方法,用于识别小样本手势图像数据集的手势。使用两个基准数据集的留一受试者交叉验证 (LOO CV) 和常规 CV 测试评估了所提出技术的有效性。使用所提出的技术开发并测试了实时美国手语 (ASL) 识别系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8df3/8840381/ec3800729ec3/sensors-22-00706-g001.jpg

相似文献

1
Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network.
Sensors (Basel). 2022 Jan 18;22(3):706. doi: 10.3390/s22030706.
2
A deep convolutional neural network model for hand gesture recognition in 2D near-infrared images.
Biomed Phys Eng Express. 2021 Jul 9;7(5). doi: 10.1088/2057-1976/ac0d91.
4
Two-Stream Mixed Convolutional Neural Network for American Sign Language Recognition.
Sensors (Basel). 2022 Aug 9;22(16):5959. doi: 10.3390/s22165959.
5
Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method.
IEEE J Biomed Health Inform. 2021 Apr;25(4):1292-1304. doi: 10.1109/JBHI.2020.3009383. Epub 2021 Apr 6.
6
Enhancement of surgical hand gesture recognition using a capsule network for a contactless interface in the operating room.
Comput Methods Programs Biomed. 2020 Jul;190:105385. doi: 10.1016/j.cmpb.2020.105385. Epub 2020 Feb 6.
7
Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning.
Sensors (Basel). 2023 Mar 24;23(7):3419. doi: 10.3390/s23073419.
8
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals.
Sensors (Basel). 2022 Aug 5;22(15):5855. doi: 10.3390/s22155855.
9
Hypertuned Deep Convolutional Neural Network for Sign Language Recognition.
Comput Intell Neurosci. 2022 Apr 30;2022:1450822. doi: 10.1155/2022/1450822. eCollection 2022.

引用本文的文献

2
YOLOv8n-RF: A Dynamic Remote Control Finger Recognition Method for Suppressing False Detection.
Sensors (Basel). 2025 Apr 27;25(9):2768. doi: 10.3390/s25092768.
3
Sign language recognition based on dual-path background erasure convolutional neural network.
Sci Rep. 2024 May 18;14(1):11360. doi: 10.1038/s41598-024-62008-z.
4
End-to-End Ultrasonic Hand Gesture Recognition.
Sensors (Basel). 2024 Apr 25;24(9):2740. doi: 10.3390/s24092740.
5
A pilot study on AI-driven approaches for classification of mental health disorders.
Front Hum Neurosci. 2024 Apr 10;18:1376338. doi: 10.3389/fnhum.2024.1376338. eCollection 2024.
6
Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications.
Natl Sci Rev. 2023 Nov 27;11(2):nwad298. doi: 10.1093/nsr/nwad298. eCollection 2024 Feb.
7
Processing Ultrasound Scans of the Inferior Vena Cava: Techniques and Applications.
Bioengineering (Basel). 2023 Sep 12;10(9):1076. doi: 10.3390/bioengineering10091076.
10
Continuous Sign Language Recognition and Its Translation into Intonation-Colored Speech.
Sensors (Basel). 2023 Jul 13;23(14):6383. doi: 10.3390/s23146383.

本文引用的文献

1
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
2
Enhanced computer vision with Microsoft Kinect sensor: a review.
IEEE Trans Cybern. 2013 Oct;43(5):1318-34. doi: 10.1109/TCYB.2013.2265378. Epub 2013 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验