Suppr超能文献

不平衡加权序贯融合多传感器 GM-PHD 算法。

An Unbalanced Weighted Sequential Fusing Multi-Sensor GM-PHD Algorithm.

机构信息

Institution of Information and Control, Hangzhou Dianzi University, Hangzhou 310018, China.

Science and Technology on Near-surface Detection Laboratory, Wuxi 214035, China.

出版信息

Sensors (Basel). 2019 Jan 17;19(2):366. doi: 10.3390/s19020366.

Abstract

In this paper, we study the multi-sensor multi-target tracking problem in the formulation of random finite sets. The Gaussian Mixture probability hypothesis density (GM-PHD) method is employed to formulate the sequential fusing multi-sensor GM-PHD (SFMGM-PHD) algorithm. First, the GM-PHD is applied to multiple sensors to get the posterior GM estimations in a parallel way. Second, we propose the SFMGM-PHD algorithm to fuse the multi-sensor GM estimations in a sequential way. Third, the unbalanced weighted fusing and adaptive sequence ordering methods are further proposed for two improved SFMGM-PHD algorithms. At last, we analyze the proposed algorithms in four different multi-sensor multi-target tracking scenes, and the results demonstrate the efficiency.

摘要

在本文中,我们研究了随机有限集公式中的多传感器多目标跟踪问题。采用高斯混合概率假设密度(GM-PHD)方法来构建顺序融合多传感器 GM-PHD(SFMGM-PHD)算法。首先,将 GM-PHD 应用于多个传感器,以并行方式获得后验 GM 估计。其次,我们提出了 SFMGM-PHD 算法,以顺序方式融合多传感器 GM 估计。第三,进一步提出了不平衡加权融合和自适应序列排序方法,用于两种改进的 SFMGM-PHD 算法。最后,我们在四个不同的多传感器多目标跟踪场景中分析了所提出的算法,结果证明了其有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验