文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

日志转换特征学习和基于特征缩放的机器学习算法,用于预测使用无线传感器网络的入侵检测的 - 障碍。

LT-FS-ID: Log-Transformed Feature Learning and Feature-Scaling-Based Machine Learning Algorithms to Predict the -Barriers for Intrusion Detection Using Wireless Sensor Network.

机构信息

Fluvial Geomorphology and Remote Sensing Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.

Department of Electronics and Communication Engineering, School of ICT, Gautam Buddha University, Greater Noida 201312, India.

出版信息

Sensors (Basel). 2022 Jan 29;22(3):1070. doi: 10.3390/s22031070.


DOI:10.3390/s22031070
PMID:35161815
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8838871/
Abstract

The dramatic increase in the computational facilities integrated with the explainable machine learning algorithms allows us to do fast intrusion detection and prevention at border areas using Wireless Sensor Networks (WSNs). This study proposed a novel approach to accurately predict the number of barriers required for fast intrusion detection and prevention. To do so, we extracted four features through Monte Carlo simulation: area of the Region of Interest (RoI), sensing range of the sensors, transmission range of the sensor, and the number of sensors. We evaluated feature importance and feature sensitivity to measure the relevancy and riskiness of the selected features. We applied log transformation and feature scaling on the feature set and trained the tuned Support Vector Regression (SVR) model (i.e., LT-FS-SVR model). We found that the model accurately predicts the number of barriers with a correlation coefficient (R) = 0.98, Root Mean Square Error (RMSE) = 6.47, and bias = 12.35. For a fair evaluation, we compared the performance of the proposed approach with the benchmark algorithms, namely, Gaussian Process Regression (GPR), Generalised Regression Neural Network (GRNN), Artificial Neural Network (ANN), and Random Forest (RF). We found that the proposed model outperforms all the benchmark algorithms.

摘要

随着可解释机器学习算法与计算设施的急剧增加,我们可以使用无线传感器网络(WSN)在边境地区快速进行入侵检测和预防。本研究提出了一种新方法,可以准确预测快速入侵检测和预防所需的障碍物数量。为此,我们通过蒙特卡罗模拟提取了四个特征:感兴趣区域(RoI)的面积、传感器的感应范围、传感器的传输范围和传感器的数量。我们评估了特征重要性和特征敏感性,以衡量所选特征的相关性和风险。我们对特征集进行了对数变换和特征缩放,并训练了调整后的支持向量回归(SVR)模型(即 LT-FS-SVR 模型)。我们发现该模型可以准确预测障碍物的数量,相关系数(R)=0.98,均方根误差(RMSE)=6.47,偏差=12.35。为了进行公平评估,我们将提出的方法与基准算法(即高斯过程回归(GPR)、广义回归神经网络(GRNN)、人工神经网络(ANN)和随机森林(RF))的性能进行了比较。我们发现提出的模型优于所有基准算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/58b9044ae18a/sensors-22-01070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/2b70de46bfa8/sensors-22-01070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/9afe26b5668f/sensors-22-01070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/c4da3d9fbd23/sensors-22-01070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/efc9a5acf9d7/sensors-22-01070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/457bb86ec40b/sensors-22-01070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/6600b63cacc4/sensors-22-01070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/58b9044ae18a/sensors-22-01070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/2b70de46bfa8/sensors-22-01070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/9afe26b5668f/sensors-22-01070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/c4da3d9fbd23/sensors-22-01070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/efc9a5acf9d7/sensors-22-01070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/457bb86ec40b/sensors-22-01070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/6600b63cacc4/sensors-22-01070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a61/8838871/58b9044ae18a/sensors-22-01070-g007.jpg

相似文献

[1]
LT-FS-ID: Log-Transformed Feature Learning and Feature-Scaling-Based Machine Learning Algorithms to Predict the -Barriers for Intrusion Detection Using Wireless Sensor Network.

Sensors (Basel). 2022-1-29

[2]
AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network.

Sci Rep. 2022-5-31

[3]
Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images.

Sci Rep. 2023-2-8

[4]
Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms.

Gait Posture. 2021-9

[5]
Comparative Analysis of Major Machine-Learning-Based Path Loss Models for Enclosed Indoor Channels.

Sensors (Basel). 2022-6-30

[6]
Artificial Intelligence Algorithm-Based Economic Denial of Sustainability Attack Detection Systems: Cloud Computing Environments.

Sensors (Basel). 2022-6-21

[7]
Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.

Brief Bioinform. 2021-7-20

[8]
Machine learning for evolutive lymphoma and residual masses recognition in whole body diffusion weighted magnetic resonance images.

Comput Methods Programs Biomed. 2021-9

[9]
An Explainable Evolving Fuzzy Neural Network to Predict the k Barriers for Intrusion Detection Using a Wireless Sensor Network.

Sensors (Basel). 2022-7-21

[10]
Using machine learning models to predict the effects of seasonal fluxes on Plesiomonas shigelloides population density.

Environ Pollut. 2023-1-15

引用本文的文献

[1]
Machine Learning-Based Modeling of pH-Sensitive Silicon Nanowire (SiNW) for Ion Sensitive Field Effect Transistor (ISFET).

Sensors (Basel). 2024-12-18

[2]
Optimising barrier placement for intrusion detection and prevention in WSNs.

PLoS One. 2024

[3]
An Explainable Evolving Fuzzy Neural Network to Predict the k Barriers for Intrusion Detection Using a Wireless Sensor Network.

Sensors (Basel). 2022-7-21

[4]
AutoML-ID: automated machine learning model for intrusion detection using wireless sensor network.

Sci Rep. 2022-5-31

本文引用的文献

[1]
Research on Location Algorithm Based on Beacon Filtering Combining DV-Hop and Multidimensional Support Vector Regression.

Sensors (Basel). 2021-8-7

[2]
Semantic segmentation of PolSAR image data using advanced deep learning model.

Sci Rep. 2021-7-28

[3]
Synthetic data in machine learning for medicine and healthcare.

Nat Biomed Eng. 2021-6

[4]
ECS-NL: An Enhanced Cuckoo Search Algorithm for Node Localisation in Wireless Sensor Networks.

Sensors (Basel). 2021-5-21

[5]
Reliability of Supervised Machine Learning Using Synthetic Data in Health Care: Model to Preserve Privacy for Data Sharing.

JMIR Med Inform. 2020-7-20

[6]
A general regression neural network.

IEEE Trans Neural Netw. 1991

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索