Fluvial Geomorphology and Remote Sensing Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
Department of Electronics and Communication Engineering, School of ICT, Gautam Buddha University, Greater Noida 201312, India.
Sensors (Basel). 2022 Jan 29;22(3):1070. doi: 10.3390/s22031070.
The dramatic increase in the computational facilities integrated with the explainable machine learning algorithms allows us to do fast intrusion detection and prevention at border areas using Wireless Sensor Networks (WSNs). This study proposed a novel approach to accurately predict the number of barriers required for fast intrusion detection and prevention. To do so, we extracted four features through Monte Carlo simulation: area of the Region of Interest (RoI), sensing range of the sensors, transmission range of the sensor, and the number of sensors. We evaluated feature importance and feature sensitivity to measure the relevancy and riskiness of the selected features. We applied log transformation and feature scaling on the feature set and trained the tuned Support Vector Regression (SVR) model (i.e., LT-FS-SVR model). We found that the model accurately predicts the number of barriers with a correlation coefficient (R) = 0.98, Root Mean Square Error (RMSE) = 6.47, and bias = 12.35. For a fair evaluation, we compared the performance of the proposed approach with the benchmark algorithms, namely, Gaussian Process Regression (GPR), Generalised Regression Neural Network (GRNN), Artificial Neural Network (ANN), and Random Forest (RF). We found that the proposed model outperforms all the benchmark algorithms.
随着可解释机器学习算法与计算设施的急剧增加,我们可以使用无线传感器网络(WSN)在边境地区快速进行入侵检测和预防。本研究提出了一种新方法,可以准确预测快速入侵检测和预防所需的障碍物数量。为此,我们通过蒙特卡罗模拟提取了四个特征:感兴趣区域(RoI)的面积、传感器的感应范围、传感器的传输范围和传感器的数量。我们评估了特征重要性和特征敏感性,以衡量所选特征的相关性和风险。我们对特征集进行了对数变换和特征缩放,并训练了调整后的支持向量回归(SVR)模型(即 LT-FS-SVR 模型)。我们发现该模型可以准确预测障碍物的数量,相关系数(R)=0.98,均方根误差(RMSE)=6.47,偏差=12.35。为了进行公平评估,我们将提出的方法与基准算法(即高斯过程回归(GPR)、广义回归神经网络(GRNN)、人工神经网络(ANN)和随机森林(RF))的性能进行了比较。我们发现提出的模型优于所有基准算法。
Sensors (Basel). 2022-6-30
Comput Methods Programs Biomed. 2021-9
Nat Biomed Eng. 2021-6
Sensors (Basel). 2021-5-21
IEEE Trans Neural Netw. 1991