文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine Learning-Based Modeling of pH-Sensitive Silicon Nanowire (SiNW) for Ion Sensitive Field Effect Transistor (ISFET).

作者信息

Ayadi Nabil, Lale Ahmet, Hajji Bekkay, Launay Jérôme, Temple-Boyer Pierre

机构信息

Laboratory of Energy, Embedded System and Information Processing, National School of Applied Sciences, Mohammed First University, Oujda 60000, Morocco.

CNRS, LAAS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.

出版信息

Sensors (Basel). 2024 Dec 18;24(24):8091. doi: 10.3390/s24248091.


DOI:10.3390/s24248091
PMID:39771826
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11679950/
Abstract

The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR). The proposed ML algorithms are trained and validated using experimental measurements of the SiNW-ISFET sensor. The results obtained show a better predictive ability of extra tree regression (ETR) compared to other techniques, with a low RMSE of 1 × 10 mA and an R value of 0.9999725. This prediction study corrects the problems associated with SiNW -ISFET sensors.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/9232188c2108/sensors-24-08091-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/71faae6bfda6/sensors-24-08091-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/7423de8a5c72/sensors-24-08091-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/1b2fbb04efd5/sensors-24-08091-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/d2759b232150/sensors-24-08091-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/dec9d8b2d255/sensors-24-08091-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/c030d6ce44c5/sensors-24-08091-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/bc277468c785/sensors-24-08091-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/ee285467e690/sensors-24-08091-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/19c6a2e5c578/sensors-24-08091-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/66d1f34ccebf/sensors-24-08091-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/55d86285a468/sensors-24-08091-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/c3aac9327ba1/sensors-24-08091-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/c6b35175cb6c/sensors-24-08091-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/43beb8664508/sensors-24-08091-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/0426b298ca53/sensors-24-08091-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/9232188c2108/sensors-24-08091-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/71faae6bfda6/sensors-24-08091-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/7423de8a5c72/sensors-24-08091-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/1b2fbb04efd5/sensors-24-08091-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/d2759b232150/sensors-24-08091-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/dec9d8b2d255/sensors-24-08091-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/c030d6ce44c5/sensors-24-08091-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/bc277468c785/sensors-24-08091-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/ee285467e690/sensors-24-08091-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/19c6a2e5c578/sensors-24-08091-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/66d1f34ccebf/sensors-24-08091-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/55d86285a468/sensors-24-08091-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/c3aac9327ba1/sensors-24-08091-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/c6b35175cb6c/sensors-24-08091-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/43beb8664508/sensors-24-08091-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/0426b298ca53/sensors-24-08091-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ee/11679950/9232188c2108/sensors-24-08091-g016.jpg

相似文献

[1]
Machine Learning-Based Modeling of pH-Sensitive Silicon Nanowire (SiNW) for Ion Sensitive Field Effect Transistor (ISFET).

Sensors (Basel). 2024-12-18

[2]
A Review of Readout Circuit Schemes Using Silicon Nanowire Ion-Sensitive Field-Effect Transistors for pH-Sensing Applications.

Biosensors (Basel). 2025-3-22

[3]
Highly Sensitive and Selective Sodium Ion Sensor Based on Silicon Nanowire Dual Gate Field-Effect Transistor.

Sensors (Basel). 2021-6-19

[4]
Process Variability in Top-Down Fabrication of Silicon Nanowire-Based Biosensor Arrays.

Sensors (Basel). 2021-7-29

[5]
Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography.

Sci Technol Adv Mater. 2017-1-6

[6]
Silicon nanowire ion sensitive field effect transistor with integrated Ag/AgCl electrode: pH sensing and noise characteristics.

Analyst. 2011-10-10

[7]
Device Noise Reduction for Silicon Nanowire Field-Effect-Transistor Based Sensors by Using a Schottky Junction Gate.

ACS Sens. 2019-1-25

[8]
Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors.

Nano Lett. 2012-9-20

[9]
Molecular Recognition by Silicon Nanowire Field-Effect Transistor and Single-Molecule Force Spectroscopy.

Micromachines (Basel). 2022-1-8

[10]
In-situ detection of C-reactive protein using silicon nanowire field effect transistor.

J Nanosci Nanotechnol. 2011-2

引用本文的文献

[1]
Smart CAR-T Nanosymbionts: archetypes and proto-models.

Front Immunol. 2025-8-12

[2]
A Review of Readout Circuit Schemes Using Silicon Nanowire Ion-Sensitive Field-Effect Transistors for pH-Sensing Applications.

Biosensors (Basel). 2025-3-22

本文引用的文献

[1]
LT-FS-ID: Log-Transformed Feature Learning and Feature-Scaling-Based Machine Learning Algorithms to Predict the -Barriers for Intrusion Detection Using Wireless Sensor Network.

Sensors (Basel). 2022-1-29

[2]
Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor.

Biosens Bioelectron. 2012-8-28

[3]
ISFET based microsensors for environmental monitoring.

Sensors (Basel). 2009-12-24

[4]
Global convergence of SMO algorithm for support vector regression.

IEEE Trans Neural Netw. 2008-6

[5]
Development of an ion-sensitive solid-state device for neurophysiological measurements.

IEEE Trans Biomed Eng. 1970-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索