Suppr超能文献

深度学习和数据融合从多传感器卫星图像估算地表土壤水分。

Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images.

机构信息

Fluvial Geomorphology and Remote Sensing Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, Madhya Pradesh, India.

出版信息

Sci Rep. 2023 Feb 8;13(1):2251. doi: 10.1038/s41598-023-28939-9.

Abstract

We propose a new architecture based on a fully connected feed-forward Artificial Neural Network (ANN) model to estimate surface soil moisture from satellite images on a large alluvial fan of the Kosi River in the Himalayan Foreland. We have extracted nine different features from Sentinel-1 (dual-polarised radar backscatter), Sentinel-2 (red and near-infrared bands), and Shuttle Radar Topographic Mission (digital elevation model) satellite products by leveraging the linear data fusion and graphical indicators. We performed a feature importance analysis by using the regression ensemble tree approach and also feature sensitivity to evaluate the impact of each feature on the response variable. For training and assessing the model performance, we conducted two field campaigns on the Kosi Fan in December 11-19, 2019 and March 01-06, 2022. We used a calibrated TDR probe to measure surface soil moisture at 224 different locations distributed throughout the fan surface. We used input features to train, validate, and test the performance of the feed-forward ANN model in a 60:10:30 ratio, respectively. We compared the performance of ANN model with ten different machine learning algorithms [i.e., Generalised Regression Neural Network (GRNN), Radial Basis Network (RBN), Exact RBN (ERBN), Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest (RF), Boosting Ensemble Learning (Boosting EL), Recurrent Neural Network (RNN), Binary Decision Tree (BDT), and Automated Machine Learning (AutoML)]. We observed that the ANN model accurately predicts the soil moisture and outperforms all the benchmark algorithms with correlation coefficient (R = 0.80), Root Mean Square Error (RMSE = 0.040 [Formula: see text]), and bias = 0.004 [Formula: see text]. Finally, for an unbiased and robust conclusion, we performed spatial distribution analysis by creating thirty different sets of training-validation-testing datasets. We observed that the performance remains consistent in all thirty scenarios. The outcomes of this study will foster new and existing applications of soil moisture.

摘要

我们提出了一种新的架构,基于完全连接的前馈人工神经网络(ANN)模型,用于从喜马拉雅山前地带科西河冲积扇的卫星图像估算地表土壤湿度。我们利用线性数据融合和图形指标,从 Sentinel-1(双极化雷达后向散射)、Sentinel-2(红和近红外波段)和 Shuttle Radar Topographic Mission(数字高程模型)卫星产品中提取了九个不同的特征。我们通过使用回归集成树方法进行特征重要性分析,以及特征敏感性分析来评估每个特征对响应变量的影响。为了训练和评估模型性能,我们在 2019 年 12 月 11 日至 19 日和 2022 年 3 月 1 日至 6 日在科西河扇区进行了两次野外考察。我们使用校准后的 TDR 探头在整个扇区表面分布的 224 个不同位置测量地表土壤湿度。我们分别使用输入特征以 60:10:30 的比例训练、验证和测试前馈 ANN 模型的性能。我们将 ANN 模型的性能与十种不同的机器学习算法(即广义回归神经网络(GRNN)、径向基网络(RBN)、精确 RBN(ERBN)、高斯过程回归(GPR)、支持向量回归(SVR)、随机森林(RF)、增强学习集成(Boosting EL)、递归神经网络(RNN)、二叉决策树(BDT)和自动化机器学习(AutoML))进行了比较。我们观察到 ANN 模型能够准确地预测土壤湿度,并且与所有基准算法相比具有更高的相关性系数(R=0.80)、均方根误差(RMSE=0.040 [公式:见正文])和偏差(bias=0.004 [公式:见正文])。最后,为了得出无偏且稳健的结论,我们通过创建三十组不同的训练-验证-测试数据集进行了空间分布分析。我们观察到在所有三十种情况下,性能都保持一致。本研究的结果将促进土壤湿度的新应用和现有应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93dd/9908911/5ec959c0487b/41598_2023_28939_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验