Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad 64000, Pakistan.
School of Built Environment, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
Sensors (Basel). 2022 Feb 2;22(3):1147. doi: 10.3390/s22031147.
Object detection is a vital step in satellite imagery-based computer vision applications such as precision agriculture, urban planning and defense applications. In satellite imagery, object detection is a very complicated task due to various reasons including low pixel resolution of objects and detection of small objects in the large scale (a single satellite image taken by Digital Globe comprises over 240 million pixels) satellite images. Object detection in satellite images has many challenges such as class variations, multiple objects pose, high variance in object size, illumination and a dense background. This study aims to compare the performance of existing deep learning algorithms for object detection in satellite imagery. We created the dataset of satellite imagery to perform object detection using convolutional neural network-based frameworks such as faster RCNN (faster region-based convolutional neural network), YOLO (you only look once), SSD (single-shot detector) and SIMRDWN (satellite imagery multiscale rapid detection with windowed networks). In addition to that, we also performed an analysis of these approaches in terms of accuracy and speed using the developed dataset of satellite imagery. The results showed that SIMRDWN has an accuracy of 97% on high-resolution images, while Faster RCNN has an accuracy of 95.31% on the standard resolution (1000 × 600). YOLOv3 has an accuracy of 94.20% on standard resolution (416 × 416) while on the other hand SSD has an accuracy of 84.61% on standard resolution (300 × 300). When it comes to speed and efficiency, YOLO is the obvious leader. In real-time surveillance, SIMRDWN fails. When YOLO takes 170 to 190 milliseconds to perform a task, SIMRDWN takes 5 to 103 milliseconds.
目标检测是基于卫星图像的计算机视觉应用的重要步骤,例如精准农业、城市规划和防御应用。在卫星图像中,由于各种原因,例如目标像素分辨率低以及在大比例尺下检测小目标(Digital Globe 拍摄的一张卫星图像包含超过 2.4 亿像素),目标检测是一项非常复杂的任务。卫星图像中的目标检测面临许多挑战,例如类别变化、多个物体姿态、物体大小变化大、光照和密集的背景。本研究旨在比较现有用于卫星图像目标检测的深度学习算法的性能。我们创建了卫星图像数据集,使用基于卷积神经网络的框架(如更快的 RCNN(更快的基于区域的卷积神经网络)、YOLO(你只看一次)、SSD(单镜头检测器)和 SIMRDWN(带有窗口网络的卫星图像多尺度快速检测)来执行目标检测。此外,我们还根据开发的卫星图像数据集,在准确性和速度方面对这些方法进行了分析。结果表明,SIMRDWN 在高分辨率图像上的准确率为 97%,而 Faster RCNN 在标准分辨率(1000×600)上的准确率为 95.31%。YOLOv3 在标准分辨率(416×416)上的准确率为 94.20%,而 SSD 在标准分辨率(300×300)上的准确率为 84.61%。在速度和效率方面,YOLO 是明显的领先者。在实时监控中,SIMRDWN 失败。当 YOLO 执行任务时需要 170 到 190 毫秒,而 SIMRDWN 需要 5 到 103 毫秒。
Sensors (Basel). 2022-2-2
Sensors (Basel). 2023-6-23
Sensors (Basel). 2020-3-17
Sensors (Basel). 2019-4-6
Sensors (Basel). 2020-7-31
BMC Public Health. 2024-10-10
Plant Phenomics. 2024-6-27
Front Psychiatry. 2022-9-23
Sci Total Environ. 2022-2-1
Sensors (Basel). 2021-5-2
Sensors (Basel). 2021-1-29
IEEE Trans Pattern Anal Mach Intell. 2016-6-6
IEEE Trans Syst Man Cybern B Cybern. 2002