文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的卫星图像自动目标检测。

Automatic Target Detection from Satellite Imagery Using Machine Learning.

机构信息

Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad 64000, Pakistan.

School of Built Environment, University of New South Wales, Kensington, Sydney, NSW 2052, Australia.

出版信息

Sensors (Basel). 2022 Feb 2;22(3):1147. doi: 10.3390/s22031147.


DOI:10.3390/s22031147
PMID:35161892
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8839603/
Abstract

Object detection is a vital step in satellite imagery-based computer vision applications such as precision agriculture, urban planning and defense applications. In satellite imagery, object detection is a very complicated task due to various reasons including low pixel resolution of objects and detection of small objects in the large scale (a single satellite image taken by Digital Globe comprises over 240 million pixels) satellite images. Object detection in satellite images has many challenges such as class variations, multiple objects pose, high variance in object size, illumination and a dense background. This study aims to compare the performance of existing deep learning algorithms for object detection in satellite imagery. We created the dataset of satellite imagery to perform object detection using convolutional neural network-based frameworks such as faster RCNN (faster region-based convolutional neural network), YOLO (you only look once), SSD (single-shot detector) and SIMRDWN (satellite imagery multiscale rapid detection with windowed networks). In addition to that, we also performed an analysis of these approaches in terms of accuracy and speed using the developed dataset of satellite imagery. The results showed that SIMRDWN has an accuracy of 97% on high-resolution images, while Faster RCNN has an accuracy of 95.31% on the standard resolution (1000 × 600). YOLOv3 has an accuracy of 94.20% on standard resolution (416 × 416) while on the other hand SSD has an accuracy of 84.61% on standard resolution (300 × 300). When it comes to speed and efficiency, YOLO is the obvious leader. In real-time surveillance, SIMRDWN fails. When YOLO takes 170 to 190 milliseconds to perform a task, SIMRDWN takes 5 to 103 milliseconds.

摘要

目标检测是基于卫星图像的计算机视觉应用的重要步骤,例如精准农业、城市规划和防御应用。在卫星图像中,由于各种原因,例如目标像素分辨率低以及在大比例尺下检测小目标(Digital Globe 拍摄的一张卫星图像包含超过 2.4 亿像素),目标检测是一项非常复杂的任务。卫星图像中的目标检测面临许多挑战,例如类别变化、多个物体姿态、物体大小变化大、光照和密集的背景。本研究旨在比较现有用于卫星图像目标检测的深度学习算法的性能。我们创建了卫星图像数据集,使用基于卷积神经网络的框架(如更快的 RCNN(更快的基于区域的卷积神经网络)、YOLO(你只看一次)、SSD(单镜头检测器)和 SIMRDWN(带有窗口网络的卫星图像多尺度快速检测)来执行目标检测。此外,我们还根据开发的卫星图像数据集,在准确性和速度方面对这些方法进行了分析。结果表明,SIMRDWN 在高分辨率图像上的准确率为 97%,而 Faster RCNN 在标准分辨率(1000×600)上的准确率为 95.31%。YOLOv3 在标准分辨率(416×416)上的准确率为 94.20%,而 SSD 在标准分辨率(300×300)上的准确率为 84.61%。在速度和效率方面,YOLO 是明显的领先者。在实时监控中,SIMRDWN 失败。当 YOLO 执行任务时需要 170 到 190 毫秒,而 SIMRDWN 需要 5 到 103 毫秒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/fd8de99086a9/sensors-22-01147-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/23f1cd0041c3/sensors-22-01147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/9867e73d88b7/sensors-22-01147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/636b8ca606b2/sensors-22-01147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/edfbb93f4822/sensors-22-01147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/842505b0b684/sensors-22-01147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/6c1db9e92bab/sensors-22-01147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/d8b8ed91560d/sensors-22-01147-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/5b6435e34f7f/sensors-22-01147-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/c8ad124c4876/sensors-22-01147-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/16b72869e09e/sensors-22-01147-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/c6825ce9fceb/sensors-22-01147-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/4ec89ca079d0/sensors-22-01147-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/fd8de99086a9/sensors-22-01147-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/23f1cd0041c3/sensors-22-01147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/9867e73d88b7/sensors-22-01147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/636b8ca606b2/sensors-22-01147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/edfbb93f4822/sensors-22-01147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/842505b0b684/sensors-22-01147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/6c1db9e92bab/sensors-22-01147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/d8b8ed91560d/sensors-22-01147-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/5b6435e34f7f/sensors-22-01147-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/c8ad124c4876/sensors-22-01147-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/16b72869e09e/sensors-22-01147-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/c6825ce9fceb/sensors-22-01147-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/4ec89ca079d0/sensors-22-01147-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a3d/8839603/fd8de99086a9/sensors-22-01147-g013.jpg

相似文献

[1]
Automatic Target Detection from Satellite Imagery Using Machine Learning.

Sensors (Basel). 2022-2-2

[2]
Agricultural Greenhouses Detection in High-Resolution Satellite Images Based on Convolutional Neural Networks: Comparison of Faster R-CNN, YOLO v3 and SSD.

Sensors (Basel). 2020-8-31

[3]
Deep Learning-Based Automatic Detection of Ships: An Experimental Study Using Satellite Images.

J Imaging. 2022-6-28

[4]
State-of-the-Art Deep Learning Methods for Objects Detection in Remote Sensing Satellite Images.

Sensors (Basel). 2023-6-23

[5]
Comparative Evaluation of Convolutional Neural Network Object Detection Algorithms for Vehicle Detection.

J Imaging. 2024-7-5

[6]
Real-time Concealed Object Detection from Passive Millimeter Wave Images Based on the YOLOv3 Algorithm.

Sensors (Basel). 2020-3-17

[7]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[8]
Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image.

PLoS One. 2021

[9]
Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.

Sensors (Basel). 2019-4-6

[10]
Improved YOLO-V3 with DenseNet for Multi-Scale Remote Sensing Target Detection.

Sensors (Basel). 2020-7-31

引用本文的文献

[1]
Examining noncommunicable diseases using satellite imagery: a systematic literature review.

BMC Public Health. 2024-10-10

[2]
DEKR-SPrior: An Efficient Bottom-Up Keypoint Detection Model for Accurate Pod Phenotyping in Soybean.

Plant Phenomics. 2024-6-27

[3]
Fast identification and quantification of c-Fos protein using you-only-look-once-v5.

Front Psychiatry. 2022-9-23

本文引用的文献

[1]
Disruptive technologies as a solution for disaster risk management: A review.

Sci Total Environ. 2022-2-1

[2]
Cluster Analysis and Model Comparison Using Smart Meter Data.

Sensors (Basel). 2021-5-2

[3]
The Art of Designing Remote IoT Devices-Technologies and Strategies for a Long Battery Life.

Sensors (Basel). 2021-1-29

[4]
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

IEEE Trans Pattern Anal Mach Intell. 2016-6-6

[5]
Varieties of learning automata: an overview.

IEEE Trans Syst Man Cybern B Cybern. 2002

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索