Suppr超能文献

基于局部全卷积神经网络与 YOLO v5 算法的遥感图像小目标检测应用

Application of local fully Convolutional Neural Network combined with YOLO v5 algorithm in small target detection of remote sensing image.

机构信息

Basic Research and Development Department of Xi'an FiberHome software and technology CO., LTD, Xi'an City, China.

School of Automation and Information Engineering University, Xi'an University of Technology, Xi'an City, China.

出版信息

PLoS One. 2021 Oct 29;16(10):e0259283. doi: 10.1371/journal.pone.0259283. eCollection 2021.

Abstract

This exploration primarily aims to jointly apply the local FCN (fully convolution neural network) and YOLO-v5 (You Only Look Once-v5) to the detection of small targets in remote sensing images. Firstly, the application effects of R-CNN (Region-Convolutional Neural Network), FRCN (Fast Region-Convolutional Neural Network), and R-FCN (Region-Based-Fully Convolutional Network) in image feature extraction are analyzed after introducing the relevant region proposal network. Secondly, YOLO-v5 algorithm is established on the basis of YOLO algorithm. Besides, the multi-scale anchor mechanism of Faster R-CNN is utilized to improve the detection ability of YOLO-v5 algorithm for small targets in the image in the process of image detection, and realize the high adaptability of YOLO-v5 algorithm to different sizes of images. Finally, the proposed detection method YOLO-v5 algorithm + R-FCN is compared with other algorithms in NWPU VHR-10 data set and Vaihingen data set. The experimental results show that the YOLO-v5 + R-FCN detection method has the optimal detection ability among many algorithms, especially for small targets in remote sensing images such as tennis courts, vehicles, and storage tanks. Moreover, the YOLO-v5 + R-FCN detection method can achieve high recall rates for different types of small targets. Furthermore, due to the deeper network architecture, the YOL v5 + R-FCN detection method has a stronger ability to extract the characteristics of image targets in the detection of remote sensing images. Meanwhile, it can achieve more accurate feature recognition and detection performance for the densely arranged target images in remote sensing images. This research can provide reference for the application of remote sensing technology in China, and promote the application of satellites for target detection tasks in related fields.

摘要

本研究旨在联合应用局部 FCN(全卷积神经网络)和 YOLO-v5(单次检测-v5)对遥感图像中的小目标进行检测。首先,在引入相关区域提议网络后,分析 R-CNN(区域卷积神经网络)、FRCN(快速区域卷积神经网络)和 R-FCN(基于区域的全卷积网络)在图像特征提取中的应用效果。其次,在 YOLO 算法的基础上建立 YOLO-v5 算法。此外,在图像检测过程中利用 Faster R-CNN 的多尺度锚机制提高 YOLO-v5 算法对图像中小目标的检测能力,实现 YOLO-v5 算法对不同尺寸图像的高适应性。最后,在 NWPU VHR-10 数据集和 Vaihingen 数据集上对提出的检测方法 YOLO-v5 算法+R-FCN 与其他算法进行比较。实验结果表明,在许多算法中,YOLO-v5+R-FCN 检测方法具有最优的检测能力,特别是对遥感图像中的网球场地、车辆和储油罐等小目标。此外,YOLO-v5+R-FCN 检测方法可以实现对不同类型小目标的高召回率。此外,由于较深的网络架构,YOLO v5+R-FCN 检测方法在遥感图像目标检测中具有更强的提取图像目标特征的能力。同时,它可以对遥感图像中密集排列的目标图像进行更准确的特征识别和检测性能。本研究可为我国遥感技术的应用提供参考,促进卫星在相关领域目标检测任务中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46bb/8555847/ab6c364a3baa/pone.0259283.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验