Suppr超能文献

基于 SoC-FPGA 和蜜蜂搜索算法的低功耗嵌入式系统设计用于实时视频跟踪。

Design of a Low-Power Embedded System Based on a SoC-FPGA and the Honeybee Search Algorithm for Real-Time Video Tracking.

机构信息

Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.

Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico.

出版信息

Sensors (Basel). 2022 Feb 8;22(3):1280. doi: 10.3390/s22031280.

Abstract

Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands. This work presents the design, implementation and assessment of a low-power embedded system based on an SoC-FPGA platform and the honeybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing real-time multiprocessing without a reduction in precision, and with the advantage of lower power consumption, which enabled portability. A starker difference was observed when measuring the power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-GPU system required more than 200 Watts. A general recommendation obtained from this research is to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when an embedded solution is required.

摘要

视频跟踪涉及在图像序列中检测先前指定的感兴趣对象。它可以应用于机器人、无人驾驶车辆和自动化等领域。由于仍然需要克服许多障碍,视频跟踪仍然被认为是一个开放的问题,这些障碍包括需要高精度和实时结果,以及便携性和低功耗要求。本工作提出了一种基于 SoC-FPGA 平台和蜜蜂搜索算法 (HSA) 的低功耗嵌入式系统的设计、实现和评估,用于实时视频跟踪。HSA 是一种组合了进化计算和群体智能技术的元启发式算法。我们的研究结果表明,SoC-FPGA 和 HSA 的结合减少了计算资源的消耗,允许实时多处理而不会降低精度,并且具有功耗更低的优势,从而实现了便携性。在测量功耗时观察到了更明显的差异。所提出的 SoC-FPGA 系统消耗约 5 瓦,而 CPU-GPU 系统需要超过 200 瓦。这项研究得出的一个一般性建议是,在需要嵌入式解决方案时,在计算机视觉应用中使用 SoC-FPGA 代替 CPU-GPU 来使用元启发式算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e8/8840388/79a8bd3d60af/sensors-22-01280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验