Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí (UASLP), Dr. Manuel Nava No. 8, Zona Universitaria Poniente, San Luis Potosí 78290, San Luis Potosí, Mexico.
Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico.
Sensors (Basel). 2022 Feb 8;22(3):1280. doi: 10.3390/s22031280.
Video tracking involves detecting previously designated objects of interest within a sequence of image frames. It can be applied in robotics, unmanned vehicles, and automation, among other fields of interest. Video tracking is still regarded as an open problem due to a number of obstacles that still need to be overcome, including the need for high precision and real-time results, as well as portability and low-power demands. This work presents the design, implementation and assessment of a low-power embedded system based on an SoC-FPGA platform and the honeybee search algorithm (HSA) for real-time video tracking. HSA is a meta-heuristic that combines evolutionary computing and swarm intelligence techniques. Our findings demonstrated that the combination of SoC-FPGA and HSA reduced the consumption of computational resources, allowing real-time multiprocessing without a reduction in precision, and with the advantage of lower power consumption, which enabled portability. A starker difference was observed when measuring the power consumption. The proposed SoC-FPGA system consumed about 5 Watts, whereas the CPU-GPU system required more than 200 Watts. A general recommendation obtained from this research is to use SoC-FPGA over CPU-GPU to work with meta-heuristics in computer vision applications when an embedded solution is required.
视频跟踪涉及在图像序列中检测先前指定的感兴趣对象。它可以应用于机器人、无人驾驶车辆和自动化等领域。由于仍然需要克服许多障碍,视频跟踪仍然被认为是一个开放的问题,这些障碍包括需要高精度和实时结果,以及便携性和低功耗要求。本工作提出了一种基于 SoC-FPGA 平台和蜜蜂搜索算法 (HSA) 的低功耗嵌入式系统的设计、实现和评估,用于实时视频跟踪。HSA 是一种组合了进化计算和群体智能技术的元启发式算法。我们的研究结果表明,SoC-FPGA 和 HSA 的结合减少了计算资源的消耗,允许实时多处理而不会降低精度,并且具有功耗更低的优势,从而实现了便携性。在测量功耗时观察到了更明显的差异。所提出的 SoC-FPGA 系统消耗约 5 瓦,而 CPU-GPU 系统需要超过 200 瓦。这项研究得出的一个一般性建议是,在需要嵌入式解决方案时,在计算机视觉应用中使用 SoC-FPGA 代替 CPU-GPU 来使用元启发式算法。