文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

藻酸盐水凝胶在下一代关节软骨再生中的应用。

Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration.

机构信息

Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg (Saar), Germany.

出版信息

Int J Mol Sci. 2022 Jan 20;23(3):1147. doi: 10.3390/ijms23031147.


DOI:10.3390/ijms23031147
PMID:35163071
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8835677/
Abstract

The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.

摘要

关节软骨自身的愈合能力有限,关节软骨损伤常常进展为骨关节炎。藻酸盐基支架是用于软骨修复和再生的有吸引力的生物材料,可用于输送细胞和治疗药物及基因序列。鉴于报道使用藻酸盐促进软骨再生的益处的研究结果存在异质性,需要更好地了解藻酸盐基系统,以便改进旨在用该化合物增强软骨再生的方法。本综述对文献进行了深入评估,重点探讨了将藻酸盐作为一种工具来支持软骨愈合过程的操作,以证明这种材料,无论是作为直接化合物使用,还是与细胞和基因治疗相结合,并结合支架引导的基因转移程序,如何以最佳方式辅助软骨再生,以便将来在患者中应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c1c127a53b01/ijms-23-01147-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/9bd3b5a951e3/ijms-23-01147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c15f89820978/ijms-23-01147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/fffb87b2a319/ijms-23-01147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/e30d4eb98407/ijms-23-01147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c5b7699d6a12/ijms-23-01147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/f8155d453c62/ijms-23-01147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/f09232c91c64/ijms-23-01147-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c1c127a53b01/ijms-23-01147-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/9bd3b5a951e3/ijms-23-01147-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c15f89820978/ijms-23-01147-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/fffb87b2a319/ijms-23-01147-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/e30d4eb98407/ijms-23-01147-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c5b7699d6a12/ijms-23-01147-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/f8155d453c62/ijms-23-01147-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/f09232c91c64/ijms-23-01147-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fce7/8835677/c1c127a53b01/ijms-23-01147-g008.jpg

相似文献

[1]
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration.

Int J Mol Sci. 2022-1-20

[2]
Alginate-waterborne polyurethane 3D bioprinted scaffolds for articular cartilage tissue engineering.

Int J Biol Macromol. 2023-12-31

[3]
Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration.

Cell Tissue Bank. 2018-3

[4]
Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair.

Biomed Mater. 2020-6-24

[5]
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair.

Nat Rev Rheumatol. 2019-1

[6]
Functional Biomolecule Delivery Systems and Bioengineering in Cartilage Regeneration.

Curr Pharm Biotechnol. 2019

[7]
ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration.

Carbohydr Polym. 2020-11-15

[8]
Hydrogel-Guided, rAAV-Mediated IGF-I Overexpression Enables Long-Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Large-Animal Full-Thickness Chondral Defect Model at One Year In Vivo.

Adv Mater. 2021-4

[9]
Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.

Biofabrication. 2020-5-12

[10]
Morphogenetically active scaffold for osteochondral repair (polyphosphate/alginate/N,O-carboxymethyl chitosan).

Eur Cell Mater. 2016-2-22

引用本文的文献

[1]
A sulfonated cartilage interpenetrating polymer network reinforces and protects the extracellular matrix of degraded cartilage.

bioRxiv. 2025-7-31

[2]
Effects of rAAV-Mediated Overexpression of and TGF- via Alginate Hydrogel-Guided Vector Delivery on the Chondroreparative Activities of Human Bone Marrow-Derived Mesenchymal Stromal Cells.

J Tissue Eng Regen Med. 2023-8-18

[3]
Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects.

Bioact Mater. 2024-10-11

[4]
Up IGF-I via high-toughness adaptive hydrogels for remodeling growth plate of children.

Regen Biomater. 2025-1-23

[5]
Harnessing the potential of hyaluronic acid methacrylate (HAMA) hydrogel for clinical applications in orthopaedic diseases.

J Orthop Translat. 2025-1-8

[6]
Biomaterial-assisted organoid technology for disease modeling and drug screening.

Mater Today Bio. 2024-12-31

[7]
3D morphometry of endothelial cells angiogenesis in an extracellular matrix composite hydrogel.

Heliyon. 2024-10-21

[8]
Polysaccharide-based hydrogels for cartilage regeneration.

Front Cell Dev Biol. 2024-10-11

[9]
Physical stimuli-responsive polymeric patches for healthcare.

Bioact Mater. 2024-9-28

[10]
Study of the Effect of Phosvitin as a Potential Carrier on the Permeation Process of Somatotropin (STH) and Corticotropin (ACTH) from Biodegradable Polymers Used as Vehicles for STH and ACTH in Semi-Solid Formulations for Skin Application.

Polymers (Basel). 2024-9-18

本文引用的文献

[1]
Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions.

Polymers (Basel). 2021-11-30

[2]
Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives.

Top Curr Chem (Cham). 2021-11-23

[3]
Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application.

Biomed Mater. 2021-9-28

[4]
Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation.

Int J Mol Sci. 2021-8-28

[5]
Acellular Cartilage Repair Technique Based on Ultrapurified Alginate Gel Implantation for Advanced Capitellar Osteochondritis Dissecans.

Orthop J Sports Med. 2021-3-11

[6]
Mesenchymal stem cells loaded on 3D-printed gradient poly(ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering.

Regen Biomater. 2021-5-16

[7]
3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties.

Adv Funct Mater. 2019-12-19

[8]
Hydrogel-Guided, rAAV-Mediated IGF-I Overexpression Enables Long-Term Cartilage Repair and Protection against Perifocal Osteoarthritis in a Large-Animal Full-Thickness Chondral Defect Model at One Year In Vivo.

Adv Mater. 2021-4

[9]
3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering.

ACS Biomater Sci Eng. 2016-7-11

[10]
Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts.

PLoS Genet. 2020-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索