Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA.
J Biomol Struct Dyn. 2022;40(20):9724-9741. doi: 10.1080/07391102.2021.1933594. Epub 2021 Jun 1.
In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike engine. By combining functional dynamics analysis and ensemble-based alanine scanning of the SARS-CoV-2 spike proteins we found that the D614G mutation can improve stability of the spike protein in both closed and open forms, but shifting thermodynamic preferences towards the open mutant form. Our results revealed that the D614G mutation can promote the increased number of stable communities and allosteric hub centers in the open form by reorganizing and enhancing the stability of the S1-S2 inter-domain interactions and restricting mobility of the S1 regions. This study provides atomistic-based view of allosteric communications in the SARS-CoV-2 spike proteins, suggesting that the D614G mutation can exert its primary effect through allosterically induced changes on stability and communications in the residue interaction networks.Communicated by Ramaswamy H. Sarma.
在这项研究中,我们采用综合计算方法,通过探索 SARS-CoV-2 刺突蛋白作为变构调节机器的原子建模,研究 D614G 突变对功能影响的分子机制。我们结合粗粒度模拟、蛋白质稳定性和动态波动通讯分析以及基于网络的社区分析,研究了不同功能状态下天然和突变 SARS-CoV-2 刺突蛋白的结构。通过距离波动通讯分析,我们探测了天然和突变 SARS-CoV-2 刺突蛋白中蛋白质残基的稳定性和变构通讯倾向,提供了证据表明 D614G 突变可以增强变构刺突引擎的远程信号。通过结合 SARS-CoV-2 刺突蛋白的功能动力学分析和基于ensemble 的丙氨酸扫描,我们发现 D614G 突变可以提高刺突蛋白在闭合和开放两种形式下的稳定性,但会改变热力学偏好,使其向开放突变形式倾斜。我们的结果表明,D614G 突变可以通过重新组织和增强 S1-S2 结构域间相互作用的稳定性,并限制 S1 区域的流动性,促进开放形式中稳定社区和变构枢纽中心数量的增加。这项研究提供了 SARS-CoV-2 刺突蛋白变构通讯的原子视角,表明 D614G 突变可以通过对残基相互作用网络的稳定性和通讯的变构诱导变化来发挥其主要作用。由 Ramaswamy H. Sarma 交流。