Suppr超能文献

氧化铜负载的硫掺杂多孔碳材料作为一种用于还原芳香族硝基化合物的卓越催化剂。

Copper oxides supported sulfur-doped porous carbon material as a remarkable catalyst for reduction of aromatic nitro compounds.

作者信息

Amirjan Marzie, Nemati Firouzeh, Elahimehr Zeinab, Rangraz Yalda

机构信息

Department of Chemistry, Semnan University, Semnan, 35131-19111, Iran.

出版信息

Sci Rep. 2024 Mar 6;14(1):5491. doi: 10.1038/s41598-024-55216-0.

Abstract

Synthesis and manufacturing of metal-organic framework derived carbon/metal oxide nanomaterials with an advisable porous structure and composition are essential as catalysts in various organic transformation processes for the preparation of environmentally friendly catalysts. In this work, we report a scalable synthesis of sulfur-doped porous carbon-containing copper oxide nanoparticles (marked CuO@CS-400) via direct pyrolysis of a mixture of metal-organic framework precursor called HKUST-1 and diphenyl disulfide for aromatic nitro compounds reduction. X-ray diffraction, surface area analysis (BET), X-ray energy diffraction (EDX) spectroscopy, thermal gravimetric analysis, elemental mapping, infrared spectroscopy (FT-IR), transmission electron microscope, and scanning electron microscope (FE-SEM) analysis were accomplished to acknowledge and investigate the effect of S and CuO as active sites in heterogeneous catalyst to perform the reduction-nitro aromatic compounds reaction in the presence of CuO@CS-400 as an effective heterogeneous catalyst. The studies showed that doping sulfur in the resulting carbon/metal oxide substrate increased the catalytic activity compared to the material without sulfur doping.

摘要

合成并制造具有适宜多孔结构和组成的金属有机框架衍生碳/金属氧化物纳米材料,对于在各种有机转化过程中作为制备环境友好型催化剂的催化剂而言至关重要。在这项工作中,我们报告了一种通过直接热解名为HKUST-1的金属有机框架前驱体与二苯基二硫醚的混合物来制备用于芳香族硝基化合物还原的含硫掺杂多孔碳负载氧化铜纳米颗粒(标记为CuO@CS-400)的可扩展合成方法。通过X射线衍射、表面积分析(BET)、X射线能量衍射(EDX)光谱、热重分析、元素映射、红外光谱(FT-IR)、透射电子显微镜和扫描电子显微镜(FE-SEM)分析,来确认并研究作为非均相催化剂活性位点的S和CuO在以CuO@CS-400作为有效非均相催化剂存在下进行还原硝基芳香族化合物反应中的作用。研究表明,与未掺杂硫的材料相比,在所得碳/金属氧化物基底中掺杂硫提高了催化活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c099/10918164/4f620b0b630b/41598_2024_55216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验