University of Florence, Florence, Italy.
Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
Microbiol Res. 2024 Aug;285:127768. doi: 10.1016/j.micres.2024.127768. Epub 2024 May 18.
In the understanding of the molecular interaction between plants and their microbiome, a key point is to identify simplified models of the microbiome including relevant bacterial and fungal partners which could also be effective in plant growth promotion. Here, as proof-of-concept, we aim to identify the possible molecular interactions between symbiotic nitrogen-fixing rhizobia and soil fungi (Trichoderma spp.), hence shed light on synergistic roles rhizospheric fungi could have in the biology of symbiotic nitrogen fixation bacteria. We selected 4 strains of the model rhizobium Sinorhizobium meliloti and 4 Trichoderma species (T. velutinum, T. tomentosum, T. gamsii and T. harzianum). In an experimental scheme of 4 ×4 strains x species combinations, we investigated the rhizobia physiological and transcriptomic responses elicited by fungal spent media, as well as spent media effects on rhizobia-host legume plant (alfalfa, Medicago sativa L.) symbiosis. Fungal spent media had large effects on rhizobia, specific for each fungal species and rhizobial strains combination, indicating a generalized rhizobia genotype x fungal genotype interaction, including synergistic, neutral and antagonistic effects on alfalfa symbiotic phenotypes. Differential expression of a high number of genes was shown in rhizobia strains with up to 25% of total genes differentially expressed upon treatment of cultures with fungal spent media. Percentages over total genes and type of genes differentially expressed changed according to both fungal species and rhizobial strain. To support the hypothesis of a relevant rhizobia genotype x fungal genotype interaction, a nested Likelihood Ratio Test indicated that the model considering the fungus-rhizobium interaction explained 23.4% of differentially expressed genes. Our results provide insights into molecular interactions involving nitrogen-fixing rhizobia and rhizospheric fungi, highlighting the panoply of genes and genotypic interactions (fungus, rhizobium, host plant) which may concur to plant symbiosis.
在理解植物与其微生物组之间的分子相互作用时,一个关键点是确定包括相关细菌和真菌伙伴在内的简化微生物组模型,这些模型也可以有效地促进植物生长。在这里,作为概念验证,我们旨在确定共生固氮根瘤菌和土壤真菌(木霉属)之间可能存在的分子相互作用,从而揭示根际真菌在共生固氮细菌生物学中可能具有的协同作用。我们选择了 4 株模式根瘤菌 Sinorhizobium meliloti 和 4 种木霉属(T. velutinum、T. tomentosum、T. gamsii 和 T. harzianum)。在 4×4 菌株×种组合的实验方案中,我们研究了真菌代谢物对根瘤菌生理和转录组的响应,以及真菌代谢物对根瘤菌-宿主豆科植物(紫花苜蓿,Medicago sativa L.)共生的影响。真菌代谢物对根瘤菌有很大的影响,每种真菌和根瘤菌菌株组合都有特定的影响,这表明存在广泛的根瘤菌基因型 x 真菌基因型相互作用,包括对紫花苜蓿共生表型的协同、中性和拮抗作用。在根瘤菌菌株中,有大量的基因表达发生了差异,在真菌代谢物处理培养物时,多达 25%的总基因表达发生了差异。差异表达的基因百分比和差异表达的基因类型根据真菌种类和根瘤菌菌株而变化。为了支持根瘤菌基因型 x 真菌基因型相互作用的假设,嵌套似然比检验表明,考虑到真菌-根瘤菌相互作用的模型解释了 23.4%的差异表达基因。我们的研究结果为涉及固氮根瘤菌和根际真菌的分子相互作用提供了新的认识,突出了可能共同作用于植物共生的基因和基因型相互作用(真菌、根瘤菌、宿主植物)的多样性。