Qiu Zhiguang, Zhu Yuanyuan, Zhang Qing, Qiao Xuejiao, Mu Rong, Xu Zheng, Yan Yan, Wang Fan, Zhang Tong, Zhuang Wei-Qin, Yu Ke
School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China.
Environ Sci Ecotechnol. 2023 Dec 9;20:100359. doi: 10.1016/j.ese.2023.100359. eCollection 2024 Jul.
Biosynthesis and biodegradation of microorganisms critically underpin the development of biotechnology, new drugs and therapies, and environmental remediation. However, most uncultured microbial species along with their metabolic capacities in extreme environments, remain obscured. Here we unravel the metabolic potential of microbial dark matters (MDMs) in four deep-inland hypersaline lakes in Xinjiang, China. Utilizing metagenomic binning, we uncovered a rich diversity of 3030 metagenome-assembled genomes (MAGs) across 82 phyla, revealing a substantial portion, 2363 MAGs, as previously unclassified at the genus level. These unknown MAGs displayed unique distribution patterns across different lakes, indicating a strong correlation with varied physicochemical conditions. Our analysis revealed an extensive array of 9635 biosynthesis gene clusters (BGCs), with a remarkable 9403 being novel, suggesting untapped biotechnological potential. Notably, some MAGs from potentially new phyla exhibited a high density of these BGCs. Beyond biosynthesis, our study also identified novel biodegradation pathways, including dehalogenation, anaerobic ammonium oxidation (Anammox), and degradation of polycyclic aromatic hydrocarbons (PAHs) and plastics, in previously unknown microbial clades. These findings significantly enrich our understanding of biosynthesis and biodegradation processes and open new avenues for biotechnological innovation, emphasizing the untapped potential of microbial diversity in hypersaline environments.
微生物的生物合成与生物降解是生物技术、新药与疗法以及环境修复发展的关键支撑。然而,大多数未培养的微生物物种及其在极端环境中的代谢能力仍不为人知。在此,我们揭示了中国新疆四个内陆深层高盐湖中微生物暗物质(MDMs)的代谢潜力。利用宏基因组分箱技术,我们在82个门中发现了丰富多样的3030个宏基因组组装基因组(MAGs),其中2363个MAGs在属水平上此前未被分类。这些未知的MAGs在不同湖泊中呈现出独特的分布模式,表明与不同的理化条件密切相关。我们的分析揭示了9635个生物合成基因簇(BGCs)的广泛阵列,其中9403个是全新的,这表明存在尚未开发的生物技术潜力。值得注意的是,一些来自潜在新门的MAGs显示出这些BGCs的高密度。除了生物合成,我们的研究还在以前未知的微生物类群中发现了新的生物降解途径,包括脱卤、厌氧氨氧化(Anammox)以及多环芳烃(PAHs)和塑料的降解。这些发现显著丰富了我们对生物合成和生物降解过程的理解,并为生物技术创新开辟了新途径,强调了高盐环境中微生物多样性尚未开发的潜力。