Suppr超能文献

与微生物共培养中诱导特殊代谢物生物合成相关的计算辅助研究:概述。

Computation-aided studies related to the induction of specialized metabolite biosynthesis in microbial co-cultures: An introductory overview.

作者信息

Boruta Tomasz

机构信息

Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, ul. Wólczańska 213, 93-005 Łódź, Poland.

出版信息

Comput Struct Biotechnol J. 2023 Aug 16;21:4021-4029. doi: 10.1016/j.csbj.2023.08.011. eCollection 2023.

Abstract

Co-cultivation is an effective method of inducing the production of specialized metabolites (SMs) in microbial strains. By mimicking the ecological interactions that take place in natural environment, this approach enables to trigger the biosynthesis of molecules which are not formed under monoculture conditions. Importantly, microbial co-cultivation may lead to the discovery of novel chemical entities of pharmaceutical interest. The experimental efforts aimed at the induction of SMs are greatly facilitated by computational techniques. The aim of this overview is to highlight the relevance of computational methods for the investigation of SM induction via microbial co-cultivation. The concepts related to the induction of SMs in microbial co-cultures are briefly introduced by addressing four areas associated with the SM induction workflows, namely the detection of SMs formed exclusively under co-culture conditions, the annotation of induced SMs, the identification of SM producer strains, and the optimization of fermentation conditions. The computational infrastructure associated with these areas, including the tools of multivariate data analysis, molecular networking, genome mining and mathematical optimization, is discussed in relation to the experimental results described in recent literature. The perspective on the future developments in the field, mainly in relation to the microbiome-related research, is also provided.

摘要

共培养是诱导微生物菌株产生特殊代谢产物(SMs)的一种有效方法。通过模拟自然环境中发生的生态相互作用,这种方法能够触发在单培养条件下无法形成的分子的生物合成。重要的是,微生物共培养可能会导致发现具有药物价值的新型化学实体。计算技术极大地推动了旨在诱导特殊代谢产物的实验工作。本综述的目的是强调计算方法对于通过微生物共培养研究特殊代谢产物诱导的相关性。通过探讨与特殊代谢产物诱导工作流程相关的四个领域,即仅在共培养条件下形成的特殊代谢产物的检测、诱导的特殊代谢产物的注释、特殊代谢产物产生菌株的鉴定以及发酵条件的优化,简要介绍了与微生物共培养中特殊代谢产物诱导相关的概念。结合近期文献中描述的实验结果,讨论了与这些领域相关的计算基础设施,包括多元数据分析工具、分子网络、基因组挖掘和数学优化。还提供了对该领域未来发展的展望,主要涉及与微生物组相关的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7662/10462793/c33b460699bb/ga1.jpg

相似文献

1
Computation-aided studies related to the induction of specialized metabolite biosynthesis in microbial co-cultures: An introductory overview.
Comput Struct Biotechnol J. 2023 Aug 16;21:4021-4029. doi: 10.1016/j.csbj.2023.08.011. eCollection 2023.
2
Enhancing chemical and biological diversity by co-cultivation.
Front Microbiol. 2023 Feb 1;14:1117559. doi: 10.3389/fmicb.2023.1117559. eCollection 2023.
3
Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery.
Biotechnol Adv. 2014 Nov 1;32(6):1180-204. doi: 10.1016/j.biotechadv.2014.03.001. Epub 2014 Mar 17.
4
The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites.
Microorganisms. 2023 Feb 12;11(2):464. doi: 10.3390/microorganisms11020464.
5
Dual Induction of New Microbial Secondary Metabolites by Fungal Bacterial Co-cultivation.
Front Microbiol. 2017 Jul 11;8:1284. doi: 10.3389/fmicb.2017.01284. eCollection 2017.
6
Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters.
Front Microbiol. 2015 Apr 20;6:299. doi: 10.3389/fmicb.2015.00299. eCollection 2015.
8
Cryptic Chemical Communication: Secondary Metabolic Responses Revealed by Microbial Co-culture.
Chem Asian J. 2020 Feb 3;15(3):327-337. doi: 10.1002/asia.201901505. Epub 2020 Jan 20.
10
Unlocking specialized metabolism in medicinal plant biotechnology through plant-microbiome interactions.
Curr Opin Plant Biol. 2024 Dec;82:102620. doi: 10.1016/j.pbi.2024.102620. Epub 2024 Sep 5.

引用本文的文献

1
COmmunity and Single Microbe Optimisation System (COSMOS).
NPJ Syst Biol Appl. 2025 May 21;11(1):51. doi: 10.1038/s41540-025-00534-w.
2
Endophytic Fungi Co-Culture: An Alternative Source of Antimicrobial Substances.
Microorganisms. 2024 Nov 25;12(12):2413. doi: 10.3390/microorganisms12122413.

本文引用的文献

4
MAW: the reproducible Metabolome Annotation Workflow for untargeted tandem mass spectrometry.
J Cheminform. 2023 Mar 4;15(1):32. doi: 10.1186/s13321-023-00695-y.
5
Enhancing chemical and biological diversity by co-cultivation.
Front Microbiol. 2023 Feb 1;14:1117559. doi: 10.3389/fmicb.2023.1117559. eCollection 2023.
6
Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia.
Biotechnol Adv. 2023 May-Jun;64:108117. doi: 10.1016/j.biotechadv.2023.108117. Epub 2023 Feb 20.
7
Metabolomic profiles of the liquid state fermentation in co-culture of and .
Front Microbiol. 2023 Jan 26;14:1080743. doi: 10.3389/fmicb.2023.1080743. eCollection 2023.
8
Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability.
Mater Today Bio. 2023 Jan 21;19:100560. doi: 10.1016/j.mtbio.2023.100560. eCollection 2023 Apr.
10
Artificial microbial consortia for bioproduction processes.
Eng Life Sci. 2022 Apr 14;23(1):e2100152. doi: 10.1002/elsc.202100152. eCollection 2023 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验