IEEE Trans Vis Comput Graph. 2022 May;28(5):2223-2233. doi: 10.1109/TVCG.2022.3150465. Epub 2022 Apr 8.
Projector deblurring is an important technology for dynamic projection mapping (PM), where the distance between a projector and a projection surface changes in time. However, conventional projector deblurring techniques do not support dynamic PM because they need to project calibration patterns to estimate the amount of defocus blur each time the surface moves. We present a deep neural network that can compensate for defocus blur in dynamic PM. The primary contribution of this paper is a unique network structure that consists of an extractor and a generator. The extractor explicitly estimates a defocus blur map and a luminance attenuation map. These maps are then injected into the middle layers of the generator network that computes the compensation image. We also propose a pseudo-projection technique for synthesizing physically plausible training data, considering the geometric misregistration that potentially happens in actual PM systems. We conducted simulation and actual PM experiments and confirmed that: (1) the proposed network structure is more suitable than a simple, more general structure for projector deblurring; (2) the network trained with the proposed pseudo-projection technique can compensate projection images for defocus blur artifacts in dynamic PM; and (3) the network supports the translation speed of the surface movement within a certain range that covers normal human motions.
投影仪去模糊是动态投影映射 (PM) 的一项重要技术,其中投影仪和投影表面之间的距离随时间变化。然而,传统的投影仪去模糊技术不支持动态 PM,因为它们需要投影校准图案来估计每次表面移动时的散焦模糊量。我们提出了一种可以在动态 PM 中补偿散焦模糊的深度神经网络。本文的主要贡献是一种独特的网络结构,它由提取器和生成器组成。提取器明确估计了散焦模糊图和亮度衰减图。然后,将这些图注入生成器网络的中间层,以计算补偿图像。我们还提出了一种伪投影技术,用于合成物理上合理的训练数据,考虑到实际 PM 系统中可能发生的几何配准错误。我们进行了模拟和实际的 PM 实验,并确认:(1) 与更简单、更通用的结构相比,所提出的网络结构更适合投影仪去模糊;(2) 用所提出的伪投影技术训练的网络可以补偿动态 PM 中投影图像的散焦模糊伪影;(3) 该网络支持在一定范围内的表面移动速度,该范围涵盖了正常的人体运动。