Kageyama Yuta, Isogawa Mariko, Iwai Daisuke, Sato Kosuke
Opt Express. 2020 Jul 6;28(14):20391-20403. doi: 10.1364/OE.396159.
Projection blur can occur in practical use cases that have non-planar and/or multi-projection display surfaces with various scattering characteristics because the surface often causes defocus and subsurface scattering. To address this issue, we propose ProDebNet, an end-to-end real-time projection deblurring network that synthesizes a projection image to minimize projection blur. The proposed method generates a projection image without explicitly estimating any geometry or scattering characteristics of the projection screen, which makes real-time processing possible. In addition, ProDebNet does not require real captured images for training data; we design a "pseudo-projected" synthetic dataset that is well-generalized to real-world blur data. Experimental results demonstrate that the proposed ProDebNet compensates for two dominant types of projection blur, i.e., defocus blur and subsurface blur, significantly faster than the baseline method, even in a real-projection scene.
在实际应用场景中,当使用具有各种散射特性的非平面和/或多投影显示表面时,可能会出现投影模糊,因为该表面通常会导致散焦和次表面散射。为了解决这个问题,我们提出了ProDebNet,这是一种端到端的实时投影去模糊网络,它通过合成投影图像来最小化投影模糊。所提出的方法在不明确估计投影屏幕的任何几何形状或散射特性的情况下生成投影图像,这使得实时处理成为可能。此外,ProDebNet不需要真实拍摄的图像作为训练数据;我们设计了一个“伪投影”合成数据集,该数据集能很好地推广到真实世界的模糊数据。实验结果表明,即使在真实投影场景中,所提出的ProDebNet补偿两种主要类型的投影模糊,即散焦模糊和次表面模糊的速度也比基线方法快得多。