Lu Chenggang, Guo Zhitao, Yuan Jinli, Xia Kewen, Yu Hengyong
Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China.
Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
Phys Med Biol. 2022 Mar 3;67(5). doi: 10.1088/1361-6560/ac5570.
Left ventricular (LV) segmentation of cardiac magnetic resonance imaging (MRI) is essential for diagnosing and treating the early stage of heart diseases. In convolutional neural networks, the target information of the LV in feature maps may be lost with convolution and max-pooling, particularly at the end of systolic. Fine segmentation of ventricular contour is still a challenge, and it may cause problems with inaccurate calculation of clinical parameters (e.g. ventricular volume). In order to improve the similarity of the neural network output and the target segmentation region, in this paper, a fine-grained calibrated double-attention convolutional network () is proposed to finely segment the endocardium and epicardium from ventricular MRI..takes the U-net as the backbone network, and the encoder-decoder structure incorporates a double grouped-attention module that is constructed by a fine calibration spatial attention module () and a fine calibration channel attention module (). The double grouped-attention mechanism enhances the expression of information in both spatial and channelwise feature maps to achieve fine calibration.The proposed approach is evaluated on the public MICCAI 2009 challenge dataset, and ablation experiments are conducted to demonstrate the effect of each grouped-attention module. Compared with other advanced segmentation methods,can obtain better LV segmentation performance.The LV segmentation results of MRI can be used to perform more accurate quantitative analysis of many essential clinical parameters and it can play an important role in image-guided clinical surgery.
心脏磁共振成像(MRI)的左心室(LV)分割对于心脏病早期的诊断和治疗至关重要。在卷积神经网络中,特征图中左心室的目标信息可能会随着卷积和最大池化而丢失,尤其是在收缩期末期。心室轮廓的精细分割仍然是一个挑战,并且可能导致临床参数(如心室容积)计算不准确的问题。为了提高神经网络输出与目标分割区域的相似度,本文提出了一种细粒度校准双注意力卷积网络(),用于从心室MRI中精细分割心内膜和心肌外膜。以U-net作为骨干网络,编码器-解码器结构包含一个双分组注意力模块,该模块由一个精细校准空间注意力模块()和一个精细校准通道注意力模块()构建。双分组注意力机制增强了空间和通道特征图中信息的表达,以实现精细校准。所提出的方法在公开的MICCAI 2009挑战数据集上进行了评估,并进行了消融实验以证明每个分组注意力模块的效果。与其他先进的分割方法相比,能够获得更好的左心室分割性能。MRI的左心室分割结果可用于对许多重要临床参数进行更准确的定量分析,并且在图像引导的临床手术中可以发挥重要作用。