Division of Image Processing, Department of Radiology, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands.
Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK.
Med Phys. 2021 Apr;48(4):1750-1763. doi: 10.1002/mp.14752. Epub 2021 Mar 4.
Quantification of left ventricular (LV) volume, ejection fraction and myocardial mass from multi-slice multi-phase cine MRI requires accurate segmentation of the LV in many images. We propose a stack attention-based convolutional neural network (CNN) approach for fully automatic segmentation from short-axis cine MR images.
To extract the relevant spatiotemporal image features, we introduce two kinds of stack methods, spatial stack model and temporal stack model, combining the target image with its neighboring images as the input of a CNN. A stack attention mechanism is proposed to weigh neighboring image slices in order to extract the relevant features using the target image as a guide. Based on stack attention and standard U-Net, a novel Stack Attention U-Net (SAUN) is proposed and trained to perform the semantic segmentation task. A loss function combining cross-entropy and Dice is used to train SAUN. The performance of the proposed method was evaluated on an internal and a public dataset using technical metrics including Dice, Hausdorff distance (HD), and mean contour distance (MCD), as well as clinical parameters, including left ventricular ejection fraction (LVEF) and myocardial mass (LVM). In addition, the results of SAUN were compared to previously presented CNN methods, including U-Net and SegNet.
The spatial stack attention model resulted in better segmentation results than the temporal stack model. On the internal dataset comprising of 167 post-myocardial infarction patients and 57 healthy volunteers, our method achieved a mean Dice of 0.91, HD of 3.37 mm, and MCD of 1.08 mm. Evaluation on the publicly available ACDC dataset demonstrated good generalization performance, yielding a Dice of 0.92, HD of 9.4 mm, and MCD of 0.74 mm on end-diastolic images, and a Dice of 0.89, HD of 7.1 mm and MCD of 1.03 mm on end-systolic images. The Pearson correlation coefficient of LVEF and LVM between automatically and manually derived results were higher than 0.98 in both datasets.
We developed a CNN with a stack attention mechanism to automatically segment the LV chamber and myocardium from the multi-slice short-axis cine MRI. The experimental results demonstrate that the proposed approach exceeds existing state-of-the-art segmentation methods and verify its potential clinical applicability.
从多层多期电影 MRI 中定量左心室 (LV) 容积、射血分数和心肌质量需要对 LV 在许多图像中进行准确分割。我们提出了一种基于堆叠注意力的卷积神经网络 (CNN) 方法,用于从短轴电影 MR 图像进行全自动分割。
为了提取相关的时空图像特征,我们引入了两种堆叠方法,空间堆叠模型和时间堆叠模型,将目标图像与其相邻图像组合作为 CNN 的输入。提出了一种堆叠注意力机制,以加权相邻图像切片,以便使用目标图像作为指导提取相关特征。基于堆叠注意力和标准 U-Net,提出了一种新的堆叠注意力 U-Net (SAUN),并对其进行训练以执行语义分割任务。使用结合交叉熵和 Dice 的损失函数来训练 SAUN。使用包括 Dice、Hausdorff 距离 (HD) 和平均轮廓距离 (MCD) 在内的技术指标以及包括左心室射血分数 (LVEF) 和心肌质量 (LVM) 在内的临床参数,在内部数据集和公共数据集上评估了所提出方法的性能。此外,还将 SAUN 的结果与之前提出的 CNN 方法,包括 U-Net 和 SegNet 进行了比较。
空间堆叠注意力模型的分割结果优于时间堆叠模型。在包含 167 名心肌梗死后患者和 57 名健康志愿者的内部数据集上,我们的方法平均 Dice 为 0.91、HD 为 3.37mm 和 MCD 为 1.08mm。在公开可用的 ACDC 数据集上的评估表明具有良好的泛化性能,在舒张末期图像上获得 Dice 为 0.92、HD 为 9.4mm 和 MCD 为 0.74mm,在收缩末期图像上获得 Dice 为 0.89、HD 为 7.1mm 和 MCD 为 1.03mm。在两个数据集上,自动和手动推导结果之间的 LVEF 和 LVM 的 Pearson 相关系数均高于 0.98。
我们开发了一种具有堆叠注意力机制的 CNN,用于从多层短轴电影 MRI 中自动分割 LV 腔室和心肌。实验结果表明,所提出的方法优于现有的分割方法,并验证了其潜在的临床适用性。