Suppr超能文献

基于 Transformer 和卷积神经网络的左心室分段超声心动图研究。

The Study of Echocardiography of Left Ventricle Segmentation Combining Transformer and Convolutional Neural Networks.

机构信息

College of Electrical Engineering, Xinjiang University.

Department of Emergency, Sun Yat-sen Memorial Hospital.

出版信息

Int Heart J. 2024;65(5):889-897. doi: 10.1536/ihj.23-638.

Abstract

Accurate prediction of echocardiographic parameters is essential for diagnosis and treatment of cardiac disease, especially for segmentation of the left ventricle to obtain measurements such as left ventricular ejection fraction and volume. However, manually outlining left ventricle on echocardiographic images is a time-consuming and physician experience-dependent task. Therefore, it is crucial to develop an accurate and efficient automatic segmentation tool. Therefore, we aimed to explore a model to perform echocardiography of left ventricle segmentation by combining transformer and convolutional neural networks (CNN).ResNet-50 was used in CNN branch. The encoder-decoder architecture was used for transformer branch, which was fused to the corresponding feature maps of the CNN branches. Fusion module was used to effectively combine feature information from the CNN and transformer. Bridge attention used to increase sensitivity and prediction accuracy of model. The entire network was trained end-to-end using the binary cross-entropy with logits loss L.In this work, we propose an automatic left ventricular (LV) segmentation model based on Transformer and CNN that efficiently captures global dependencies and spatial details and create a fusion module using CBAM that fuses Transformer and CNN features. In addition, attention is also computed using multi-level fusion features to obtain the final attention segmentation map. The model was trained and evaluated on a large cardiac image dataset, EchoNet-Dynamic, with test dice coefficient of 92.4%.The results show that our model can better segment left ventricle. We also tested our model on clinical patient ultrasound images, and visualization results proved effectiveness of the model.

摘要

准确预测超声心动图参数对于心脏病的诊断和治疗至关重要,特别是对于左心室的分割,以便获得左心室射血分数和容量等测量值。然而,手动勾画超声心动图图像上的左心室是一项耗时且依赖医师经验的任务。因此,开发一种准确且高效的自动分割工具至关重要。因此,我们旨在探索一种通过结合转换器和卷积神经网络(CNN)来执行左心室分割的模型。在 CNN 分支中使用了 ResNet-50。在转换器分支中使用了编码器-解码器架构,该架构与 CNN 分支的相应特征图融合。融合模块用于有效地结合来自 CNN 和转换器的特征信息。桥接注意力用于提高模型的敏感性和预测准确性。整个网络使用带有逻辑损失 L 的二进制交叉熵进行端到端训练。在这项工作中,我们提出了一种基于 Transformer 和 CNN 的自动左心室(LV)分割模型,该模型能够有效地捕捉全局依赖关系和空间细节,并使用 CBAM 创建一个融合模块,该模块融合了 Transformer 和 CNN 的特征。此外,还使用多级融合特征计算注意力,以获得最终的注意力分割图。该模型在大型心脏图像数据集 EchoNet-Dynamic 上进行了训练和评估,测试骰子系数为 92.4%。结果表明,我们的模型可以更好地分割左心室。我们还在临床患者的超声图像上测试了我们的模型,可视化结果证明了模型的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验