Suppr超能文献

纸基微流控装置中的自发浸润:实验与数值模拟。

Spontaneous Imbibition in Paper-Based Microfluidic Devices: Experiments and Numerical Simulations.

机构信息

Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China.

Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China.

出版信息

Langmuir. 2022 Mar 1;38(8):2677-2685. doi: 10.1021/acs.langmuir.1c03403. Epub 2022 Feb 15.

Abstract

Microfluidic paper-based analytical devices (μPADs) have quickly been an excellent choice for point-of-care diagnostic platforms ever since they appeared. Because capillary force is the main driving force for the transport of analytes in μPADs, low spontaneous imbibition rates may limit the detection sensitivity. Therefore, quantitative understanding of internal spontaneous capillary flow progress is requisite for designing sensitive and accurate μPADs. In this work, experimental and numerical studies have been performed to investigate the capillary flow in a typical filter paper. We use light-transmitting imaging technology to study wetting saturation changes in the paper. Our experimental results show an obvious transition of a saturated wetting front into an unsaturated wetting front as the imbibition proceeds. We find that the single-phase Darcy model considerably overestimates the temporal wetting penetration depths. Alternatively, we use the Richards equation together with the two-phase flow material properties that are obtained from the image-based pore-network modeling of the filter paper. Moreover, we have considered a dynamic term in the capillary pressure due to strong wetting dynamics in spontaneous imbibition. As a result, the numerical predictions of spontaneous imbibition in the paper are significantly improved. Our studies provide insights into the development of a quantitative spontaneous imbibition model for μPADs applications.

摘要

微流控纸基分析器件(μPADs)自出现以来,迅速成为即时诊断平台的理想选择。由于毛细作用力是 μPADs 中分析物传输的主要驱动力,低自发浸润速率可能会限制检测灵敏度。因此,定量了解内部自发毛细流动过程对于设计灵敏和准确的 μPADs 是必要的。在这项工作中,我们进行了实验和数值研究,以研究典型滤纸中的毛细流动。我们使用透光成像技术研究纸张中的润湿饱和度变化。实验结果表明,随着浸润的进行,饱和润湿前沿明显转变为不饱和润湿前沿。我们发现单相达西模型极大地高估了时间润湿穿透深度。相反,我们使用 Richards 方程以及从滤纸的基于图像的孔隙网络建模中获得的两相流材料特性。此外,我们考虑了由于自发浸润中较强的润湿动力学而导致的毛细压力中的动态项。结果,纸张中自发浸润的数值预测得到了显著改善。我们的研究为 μPADs 应用中的定量自发浸润模型的发展提供了深入的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验