Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA.
Biosensors (Basel). 2023 May 26;13(6):580. doi: 10.3390/bios13060580.
This research explores the dynamics of a fluidically loaded Bi-Material cantilever (B-MaC), a critical component of μPADs (microfluidic paper-based analytical devices) used in point-of-care diagnostics. Constructed from Scotch Tape and Whatman Grade 41 filter paper strips, the B-MaC's behavior under fluid imbibition is examined. A capillary fluid flow model is formulated for the B-MaC, adhering to the Lucas-Washburn (LW) equation, and supported by empirical data. This paper further investigates the stress-strain relationship to estimate the modulus of the B-MaC at various saturation levels and to predict the behavior of the fluidically loaded cantilever. The study shows that the Young's modulus of Whatman Grade 41 filter paper drastically decreases to approximately 20 MPa (about 7% of its dry-state value) upon full saturation. This significant decrease in flexural rigidity, in conjunction with the hygroexpansive strain and coefficient of hygroexpansion (empirically deduced to be 0.008), is essential in determining the B-MaC's deflection. The proposed moderate deflection formulation effectively predicts the B-MaC's behavior under fluidic loading, emphasizing the measurement of maximum (tip) deflection using interfacial boundary conditions for the B-MaC's wet and dry regions. This knowledge of tip deflection will prove instrumental in optimizing the design parameters of B-MaCs.
本研究探讨了受流体力加载的双材料悬臂梁(B-MaC)的动力学特性,B-MaC 是用于即时诊断的微流控纸基分析装置(μPADs)中的关键组件。B-MaC 由 Scotch 胶带和 Whatman 41 级滤纸条构建而成,其在流体吸入下的行为受到了检验。针对 B-MaC 构建了一个毛细管流体流动模型,该模型符合 Lucas-Washburn(LW)方程,并得到了经验数据的支持。本文进一步研究了应力-应变关系,以估算 B-MaC 在不同饱和度下的模量,并预测受流体力加载的悬臂梁的行为。研究表明,Whatman 41 级滤纸的杨氏模量在完全饱和时急剧下降至约 20 MPa(约为其干燥状态值的 7%)。这种弯曲刚度的显著降低,加上吸湿膨胀应变和吸湿膨胀系数(通过经验推断为 0.008),对于确定 B-MaC 的挠度至关重要。所提出的中等挠度公式有效地预测了 B-MaC 在流体力加载下的行为,强调了使用 B-MaC 的湿区和干区的界面边界条件来测量最大(尖端)挠度。这种尖端挠度的知识对于优化 B-MaC 的设计参数将非常有帮助。