Suppr超能文献

部分饱和纸张中的流体流动动力学

Fluid Flow Dynamics in Partially Saturated Paper.

作者信息

Kumar Ashutosh, Hatayama Jun, Soucy Alex, Carpio Ethan, Rahmani Nassim, Anagnostopoulos Constantine, Faghri Mohammad

机构信息

Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA.

出版信息

Micromachines (Basel). 2024 Jan 31;15(2):212. doi: 10.3390/mi15020212.

Abstract

This study presents an integrated approach to understanding fluid dynamics in Microfluidic Paper-Based Analytical Devices (µPADs), combining empirical investigations with advanced numerical modeling. Paper-based devices are recognized for their low cost, portability, and simplicity and are increasingly applied in health, environmental monitoring, and food quality analysis. However, challenges such as lack of flow control and the need for advanced detection methods have limited their widespread adoption. To address these challenges, our study introduces a novel numerical model that incorporates factors such as pore size, fiber orientation, and porosity, thus providing a comprehensive understanding of fluid dynamics across various saturation levels of paper. Empirical results focused on observing the wetted length in saturated paper substrates. The numerical model, integrating the Highly Simplified Marker and Cell (HSMAC) method and the High Order accuracy scheme Reducing Numerical Error Terms (HORNET) scheme, successfully predicts fluid flow in scenarios challenging for empirical observation, especially at high saturation levels. The model effectively mimicked the Lucas-Washburn relation for dry paper and demonstrated the increasing time requirement for fluid movement with rising saturation levels. It also accurately predicted faster fluid flow in Whatman Grade 4 filter paper compared with Grade 41 due to its larger pore size and forecasted an increased flow rate in the machine direction fiber orientation of Whatman Grade 4. These findings have significant implications for the design and application of µPADs, emphasizing the need for precise control of fluid flow and the consideration of substrate microstructural properties. The study's combination of empirical data and advanced numerical modeling marks a considerable advancement in paper-based microfluidics, offering robust frameworks for future development and optimization of paper-based assays.

摘要

本研究提出了一种综合方法来理解基于微流控纸的分析设备(µPADs)中的流体动力学,将实证研究与先进的数值建模相结合。基于纸的设备因其低成本、便携性和简单性而受到认可,并越来越多地应用于健康、环境监测和食品质量分析。然而,诸如缺乏流量控制和对先进检测方法的需求等挑战限制了它们的广泛采用。为了应对这些挑战,我们的研究引入了一种新颖的数值模型,该模型纳入了孔径、纤维取向和孔隙率等因素,从而全面了解纸在不同饱和度水平下的流体动力学。实证结果集中于观察饱和纸基材中的润湿长度。该数值模型结合了高度简化的标记和单元(HSMAC)方法和高阶精度减少数值误差项(HORNET)方案,成功地预测了在实证观察具有挑战性的情况下的流体流动,特别是在高饱和度水平下。该模型有效地模拟了干纸的卢卡斯 - 沃什伯恩关系,并证明了随着饱和度水平的上升,流体移动所需时间增加。它还准确地预测了由于孔径较大,与41号相比,Whatman 4号滤纸中的流体流动更快,并预测了Whatman 4号在机器方向纤维取向时流速会增加。这些发现对µPADs的设计和应用具有重要意义,强调了精确控制流体流动和考虑基材微观结构特性的必要性。该研究将实证数据与先进的数值建模相结合,标志着基于纸的微流控技术取得了重大进展,为基于纸的分析方法的未来开发和优化提供了强大的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2b0/10892355/437f6dcb5b59/micromachines-15-00212-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验