KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea.
Adv Sci (Weinh). 2022 Apr;9(11):e2104773. doi: 10.1002/advs.202104773. Epub 2022 Feb 16.
The human brain's neural networks are sparsely connected via tunable and probabilistic synapses, which may be essential for performing energy-efficient cognitive and intellectual functions. In this sense, the implementation of a flexible neural network with probabilistic synapses is a first step toward realizing the ultimate energy-efficient computing framework. Here, inspired by the efficient threshold-tunable and probabilistic rod-to-rod bipolar synapses in the human visual system, a 16 × 16 crossbar array comprising the vertical form of gate-tunable probabilistic SiO memristive synaptic barristor utilizing the Si/graphene heterojunction is designed and fabricated. Controllable stochastic switching dynamics in this array are achieved via various input voltage pulse schemes. In particular, the threshold tunability via electrostatic gating enables the efficient in situ alteration of the probabilistic switching activation (P ) from 0 to 1.0, and can even modulate the degree of the P change. A drop-connected algorithm based on the P is constructed and used to successfully classify the shapes of several fashion items. The suggested approach can decrease the learning energy by up to ≈2,116 times relative to that of the conventional all-to-all connected network while exhibiting a high recognition accuracy of ≈93 %.
人类大脑的神经网络通过可调谐和概率性的突触稀疏连接,这对于执行节能的认知和智力功能可能是至关重要的。从这个意义上说,实现具有概率性突触的灵活神经网络是实现最终节能计算框架的第一步。在这里,受人类视觉系统中高效的可调谐阈值和概率性棒状到棒状双极突触的启发,设计并制造了一个由垂直形式的栅极可调谐概率性 SiO 忆阻器突触条形电阻器组成的 16×16 交叉阵列,该阵列利用了 Si/石墨烯异质结。通过各种输入电压脉冲方案实现了该阵列中的可控随机开关动力学。特别地,通过静电门控实现的阈值可调谐性使得能够高效地原位改变概率性开关激活(P)从 0 到 1.0,甚至可以调节 P 变化的程度。基于 P 构建并使用下拉连接算法成功地对几种时尚物品的形状进行了分类。所提出的方法可以将学习能量降低约 2116 倍,与传统的全连接网络相比,同时保持约 93%的高识别准确率。