Li Yiyang, Fuller Elliot J, Sugar Joshua D, Yoo Sangmin, Ashby David S, Bennett Christopher H, Horton Robert D, Bartsch Michael S, Marinella Matthew J, Lu Wei D, Talin A Alec
Sandia National Laboratories, Livermore, CA, 94550, USA.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
Adv Mater. 2020 Nov;32(45):e2003984. doi: 10.1002/adma.202003984. Epub 2020 Sep 22.
Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogue-memory-based neuromorphic computing can be orders of magnitude more energy efficient at data-intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometer-sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttria-stabilized zirconia (YSZ), toward eliminating filaments. Filament-free, bulk-RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulk-RRAM devices using TiO switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulk-RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energy-efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.
随着计算需求和能源消耗的迅速增加,数字计算正接近其物理极限。基于模拟记忆的神经形态计算在诸如深度神经网络等数据密集型任务中,能效可能会高出几个数量级,但一直受到模拟电阻性记忆不准确且不可预测的开关特性的限制。丝状电阻式随机存取存储器(RRAM)由于纳米尺寸细丝中离散缺陷的随机动力学运动而存在随机开关现象。在这项工作中,通过引入固体电解质夹层(在本案例中为氧化钇稳定的氧化锆(YSZ))来消除细丝,从而克服了这种随机性。无细丝的体RRAM单元反而利用体点缺陷浓度来存储模拟状态,由于氧空位缺陷的统计系综行为即使在单个缺陷是随机的情况下也是确定性的,因此产生可预测的开关特性。实验和建模均表明,使用TiO 开关层和YSZ电解质的体RRAM器件可产生确定性和线性模拟开关,以实现高效推理和训练。体RRAM解决了许多因忆阻器不可预测性而阻碍商业化的突出问题,因此能够为节能神经形态计算带来前所未有的新应用。除了RRAM,这项工作还展示了如何利用离子材料中的体点缺陷来设计确定性的纳米电子材料和器件。