Suppr超能文献

基于多忆阻器突触的神经形态计算。

Neuromorphic computing with multi-memristive synapses.

机构信息

IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland.

Microelectronic Systems Laboratory, EPFL, Bldg ELD, Station 11, CH-1015, Lausanne, Switzerland.

出版信息

Nat Commun. 2018 Jun 28;9(1):2514. doi: 10.1038/s41467-018-04933-y.

Abstract

Neuromorphic computing has emerged as a promising avenue towards building the next generation of intelligent computing systems. It has been proposed that memristive devices, which exhibit history-dependent conductivity modulation, could efficiently represent the synaptic weights in artificial neural networks. However, precise modulation of the device conductance over a wide dynamic range, necessary to maintain high network accuracy, is proving to be challenging. To address this, we present a multi-memristive synaptic architecture with an efficient global counter-based arbitration scheme. We focus on phase change memory devices, develop a comprehensive model and demonstrate via simulations the effectiveness of the concept for both spiking and non-spiking neural networks. Moreover, we present experimental results involving over a million phase change memory devices for unsupervised learning of temporal correlations using a spiking neural network. The work presents a significant step towards the realization of large-scale and energy-efficient neuromorphic computing systems.

摘要

神经形态计算已成为构建下一代智能计算系统的一个很有前途的途径。有人提出,具有依赖历史的导电性调制的忆阻器可以有效地表示人工神经网络中的突触权重。然而,在需要维持高网络精度的宽动态范围内对器件电导进行精确调制被证明是具有挑战性的。为了解决这个问题,我们提出了一种具有高效全局基于计数器的仲裁方案的多忆阻突触结构。我们专注于相变存储器件,开发了一个全面的模型,并通过仿真演示了该概念对于尖峰和非尖峰神经网络的有效性。此外,我们还展示了涉及超过 100 万个相变存储器件的实验结果,用于使用尖峰神经网络进行时间相关性的无监督学习。这项工作朝着实现大规模和高能效的神经形态计算系统迈出了重要的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff33/6023896/0ad2992ee461/41467_2018_4933_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验