Suppr超能文献

MINet:用于眼底微血管分割的多尺度输入网络。

MINet: Multi-scale input network for fundus microvascular segmentation.

机构信息

School of Information Science & Engineering, Shandong Normal University, No. 1 Daxue Road, Changqing District, Jinan 250358, China.

Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwuwei Seventh Road, Huaiyin District, Jinan 250021, China.

出版信息

Comput Biol Med. 2023 Mar;154:106608. doi: 10.1016/j.compbiomed.2023.106608. Epub 2023 Jan 24.

Abstract

Vessel segmentation in fundus images is a key procedure in the diagnosis of ophthalmic diseases, which can play a role in assisting doctors in diagnosis. Although current deep learning-based methods can achieve high accuracy in segmenting fundus vessel images, the results are not satisfactory in segmenting microscopic vessels that are close to the background region. The reason for this problem is that thin blood vessels contain very little information, with the convolution operation of each layer in the deep network, this part of the information will be randomly lost. To improve the segmentation ability of the small blood vessel region, a multi-input network (MINet) was proposed to segment vascular regions more accurately. We designed a multi-input fusion module (MIF) in the encoder, which is proposed to acquire multi-scale features in the encoder stage while preserving the microvessel feature information. In addition, to further aggregate multi-scale information from adjacent regions, a multi-scale atrous spatial pyramid (MASP) module is proposed. This module can enhance the extraction of vascular information without reducing the resolution loss. In order to better recover segmentation results with details, we designed a refinement module, which acts on the last layer of the network output to refine the results of the last layer of the network to get more accurate segmentation results. We use the HRF, CHASE_DB1 public dataset to validate the fundus vessel segmentation performance of the MINet model. Also, we merged these two public datasets with our collected Ultra-widefield fundus image (UWF) data as one dataset to test the generalization ability of the model. Experimental results show that MINet achieves an F score of 0.8324 on the microvessel segmentation task, achieving a high accuracy compared to the current mainstream models.

摘要

眼底图像血管分割是眼科疾病诊断的关键步骤,它可以辅助医生进行诊断。虽然基于深度学习的方法可以在分割眼底血管图像时达到很高的准确率,但在分割接近背景区域的微小血管时,效果并不理想。造成这个问题的原因是,细血管所含的信息非常少,在深度网络的每一层卷积操作中,这部分信息都会被随机丢失。为了提高小血管区域的分割能力,提出了一种多输入网络(MINet),以更准确地分割血管区域。我们在编码器中设计了一个多输入融合模块(MIF),用于在编码器阶段获取多尺度特征,同时保留微血管特征信息。此外,为了进一步聚合来自相邻区域的多尺度信息,提出了多尺度空洞空间金字塔(MASP)模块。该模块可以增强血管信息的提取,而不会降低分辨率的损失。为了更好地恢复具有细节的分割结果,我们设计了一个细化模块,该模块作用于网络输出的最后一层,以细化网络最后一层的结果,从而获得更准确的分割结果。我们使用 HRF、CHASE_DB1 公共数据集验证 MINet 模型在眼底血管分割性能上的表现。此外,我们将这两个公共数据集与我们收集的超广角眼底图像(UWF)数据合并为一个数据集,以测试模型的泛化能力。实验结果表明,MINet 在微血管分割任务上的 F 分数达到 0.8324,与当前主流模型相比,达到了较高的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验