Department of General and Applied Biology, Sao Paulo State University (UNESP), 24-A Avenue, 1515, Rio Claro, SP, 13506-900, Brazil.
College of Technology and Agricultural Sciences, Sao Paulo State University (UNESP), SP‑294, km 651, Dracena, SP, Brazil.
Sci Rep. 2022 Feb 16;12(1):2658. doi: 10.1038/s41598-022-06657-y.
Zinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.2 to 1.4 mM. Sensitivity was observed at 0.6 mM for the Gram-negative and 1.0 mM for the Gram-positive cells. Fluorescence microscopy was used to examine the interference of ZnO NPs on the membrane and the cell division apparatus of B. subtilis (amy::pspac-ftsZ-gfpmut1) expressing FtsZ-GFP. The results showed that ZnO NPs did not interfere with the assembly of the divisional Z-ring. However, 70% of the cells exhibited damage in the cytoplasmic membrane after 15 min of exposure to the ZnO NPs. Electrostatic forces, production of Zn ions and the generation of reactive oxygen species were described as possible pathways of the bactericidal action of ZnO. Therefore, understanding the bactericidal MOA of ZnO NPs can potentially help in the construction of predictive models to fight bacterial resistance.
氧化锌纳米粒子(ZnO NPs)由于其抗菌特性而被广泛应用于纳米材料,但它们的主要作用机制(MOA)尚未完全阐明。本研究通过使用 X 射线衍射、傅里叶变换红外光谱和扫描电子显微镜对 ZnO NPs 进行了表征。通过在 0.2 至 1.4 mM 的浓度范围内暴露于 ZnO NPs 后,使用 Resazurin 微量滴定法(REMA)评估了 ZnO NPs 对临床相关细菌大肠杆菌、金黄色葡萄球菌、铜绿假单胞菌和革兰氏阳性模型枯草芽孢杆菌的抗菌活性。在 0.6 mM 时观察到革兰氏阴性菌的敏感性,在 1.0 mM 时观察到革兰氏阳性菌的敏感性。荧光显微镜用于检查 ZnO NPs 对表达 FtsZ-GFP 的枯草芽孢杆菌(amy::pspac-ftsZ-gfpmut1)的细胞膜和细胞分裂装置的干扰。结果表明,ZnO NPs 不会干扰分裂 Z 环的组装。然而,在暴露于 ZnO NPs 15 分钟后,70%的细胞显示细胞质膜损伤。静电作用力、Zn 离子的产生和活性氧的产生被描述为 ZnO 杀菌作用的可能途径。因此,了解 ZnO NPs 的杀菌 MOA 可能有助于构建对抗细菌耐药性的预测模型。