Khan Azmat Ali, Yadav Annu, Bansod Sudhakar, Khan Azhar U, Jangid Nirmala Kumari, Alam Mahboob
Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
Bioinorg Chem Appl. 2025 Jul 14;2025:5541535. doi: 10.1155/bca/5541535. eCollection 2025.
This study investigates the green synthesis of zinc oxide nanoparticles (ZnO NPs) using the aqueous extract of the aquatic plant (greater duckweed) and evaluates their multifunctional properties. The ZnO NPs were synthesized via a sustainable method and characterized using UV-visible spectroscopy, TEM, FESEM, EDX, FTIR, and XRD analyses. UV-visible spectroscopy confirmed the formation of ZnO NPs with a characteristic absorption peak at ∼349 nm. TEM and FESEM analyses revealed spherical and nonspherical particles ranging from 20 to 70 nm. The antimicrobial activity of ZnO NPs was assessed against three bacterial strains (, , and ) and three fungal strains (, , and ). Notably, showed a maximum inhibition zone of 18 mm at 100 mg/mL, while exhibited the highest antifungal response with a zone of 22 mm and an activity index (AI) of 1.15, indicating comparable or superior activity to ketoconazole at higher concentrations. Molecular docking simulations using the crystal structure of YmaH (Hfq) protein (PDB ID: 3HSB) revealed strong noncovalent interactions with Zn atoms of the NPs, particularly involving HIS57 and LEU26 residues. Additionally, ZnO NPs demonstrated a noteworthy photocatalytic degradation (90.4%) of methylene blue dye under sunlight exposure. These results highlight the potential of -mediated ZnO NPs for use in antimicrobial therapies and environmental remediation applications.
本研究调查了利用水生植物(大浮萍)水提取物绿色合成氧化锌纳米颗粒(ZnO NPs)的方法,并评估了它们的多功能特性。通过可持续方法合成了ZnO NPs,并使用紫外可见光谱、透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)、能谱分析(EDX)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)分析对其进行了表征。紫外可见光谱证实形成了ZnO NPs,其在约349 nm处有特征吸收峰。TEM和FESEM分析显示颗粒呈球形和非球形,粒径范围为20至70 nm。评估了ZnO NPs对三种细菌菌株(、和)和三种真菌菌株(、和)的抗菌活性。值得注意的是,在100 mg/mL时显示出最大抑菌圈为18 mm,而表现出最高的抗真菌反应,抑菌圈为22 mm,活性指数(AI)为1.15,表明在较高浓度下其活性与酮康唑相当或更优。使用YmaH(Hfq)蛋白的晶体结构(蛋白质数据银行ID:3HSB)进行的分子对接模拟显示,与NPs的锌原子有强烈的非共价相互作用,特别是涉及HIS57和LEU26残基。此外,ZnO NPs在阳光照射下对亚甲基蓝染料表现出显著的光催化降解(90.4%)。这些结果突出了介导的ZnO NPs在抗菌治疗和环境修复应用中的潜力。