Farma Rakhmawati, Apriyani Irma, Awitdrus Awitdrus, Taer Erman, Apriwandi Apriwandi
Department of Physics, University of Riau, 28293, Simpang Baru, Riau, Indonesia.
Sci Rep. 2022 Feb 16;12(1):2572. doi: 10.1038/s41598-022-06619-4.
Carbon nanofibers derived from lignocellulosic materials have become the most prevalent free-standing electrode material for supercapacitors due to their renewable and sustainable nature. This study used Arenga pinnata bunches (APB) as raw material for hemicellulose compounds to produce carbon electrodes through carbonization processes at 650 °C, 700 °C, 750 °C, and 800 °C, in the presence of flowing N gas. The variations in carbonization temperature resulted in carbon electrodes with surface morphology having a nanofiber structure with micro-meso pore distribution. According to the results, the carbonization temperature of 700 °C (APB-700) is the optimum temperature for producing electrode surface morphology with a combination of nanofiber, micro-and mesopore distributions, as well as specific surface area, specific capacitance, energy density, and power density of 1231.896 m g, 201.6 F g, 28.0 Wh kg, and 109.5 W kg, respectively, for the two electrode systems. This shows the combination of nanofibers and the distribution of micro-and mesopores produced with variations in carbonization temperature has the capacity to improve the performance of supercapacitor cells. Therefore, carbon nanofibers derived from Arenga pinnata bunches have the potential to be used as free-standing electrode materials for supercapacitors without employing doping, binder, electrospinning, and heteroatom template methods.
源自木质纤维素材料的碳纳米纤维因其可再生和可持续的特性,已成为超级电容器中最普遍使用的独立电极材料。本研究以桄榔束(APB)作为半纤维素化合物的原料,在流动的氮气环境下,通过在650℃、700℃、750℃和800℃进行碳化过程来制备碳电极。碳化温度的变化导致碳电极的表面形态具有纳米纤维结构以及微孔-介孔分布。结果表明,700℃(APB-700)的碳化温度是制备具有纳米纤维、微孔和介孔分布组合的电极表面形态的最佳温度,对于双电极体系,其比表面积、比电容、能量密度和功率密度分别为1231.896 m²/g、201.6 F/g、28.0 Wh/kg和109.5 W/kg。这表明随着碳化温度变化产生的纳米纤维与微孔和介孔分布的组合有能力提高超级电容器电池的性能。因此,源自桄榔束的碳纳米纤维有潜力用作超级电容器的独立电极材料,而无需采用掺杂、粘结剂、静电纺丝和杂原子模板方法。