Ouyang Jiahong, Adeli Ehsan, Pohl Kilian M, Zhao Qingyu, Zaharchuk Greg
Stanford University, Stanford, CA.
SRI International, Menlo Park, CA.
Inf Process Med Imaging. 2021 Jun;12729:321-333. doi: 10.1007/978-3-030-78191-0_25. Epub 2021 Jun 14.
Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation.
多模态磁共振成像(MRI)在神经成像应用中被广泛使用,因为不同的MR序列能提供有关脑结构的互补信息。最近的研究表明,多模态深度学习分析可以通过将解剖学(形状)和模态(外观)信息明确解耦到单独的图像表示中而受益。在这项工作中,我们对主流策略提出了挑战,表明它们在理论和实践中都不会自然地导致表示解耦。为了解决这个问题,我们提出了一种边缘损失,用于规范跨受试者和模态的表示关系中的相似性。为了实现稳健的训练,我们进一步使用条件卷积来设计一个单一模型,用于对所有模态的图像进行编码。最后,我们提出了一种融合函数,将解耦的解剖学表示组合成一组模态不变特征,用于下游任务。我们在三个多模态神经成像数据集上评估了所提出的方法。实验表明,与现有的解耦策略相比,我们提出的方法可以实现更好的解耦表示。结果还表明,融合的解剖学表示在零剂量PET重建和脑肿瘤分割的下游任务中具有潜力。