Ma Yicong, Lin Chao, Cai Linfeng, Qu Geping, Bai Xiaopeng, Yang Lin, Huang Zhifeng
Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China.
Department of Physics, The Chinese University of Hong Kong (CUHK), Sha Tin, Hong Kong SAR, China.
Small. 2022 Apr;18(14):e2107657. doi: 10.1002/smll.202107657. Epub 2022 Feb 17.
Metallic chiral nanoparticles (CNPs) promisingly function as asymmetric catalysts but lack an important study in thermal stability of optical activity that stems from metastable chiral lattices. In this work, annealing is applied to silver (Ag) CNPs, fabricated by glancing angle deposition (GLAD), and causes elimination of optical activity at 200 °C, mainly ascribed to chiral-to-achiral lattice transformation. The Ag CNPs are remarkedly enhanced in thermal stability through an alloying with aluminum (Al) via layer-by-layer GLAD to generate binary Ag Al CNPs composed of solid-state liquids, whose optical activity vanishes at 700 °C. Ease in the diffusion of Al atoms in the host Ag CNPs and thermal insulation from the Al O layers partially covering the binary CNPs effectively prohibit structural relaxation of the metastable chiral lattices, accounting for the significant enhancement in thermal stability of chiral lattices. This is a pioneering work to investigate the fundamental principles determining the thermal stability of metallic CNPs in terms of chiral structures and optical activity. It paves the way toward applying metallic CNPs to asymmetric catalysis at high temperature to accelerate an asymmetric synthesis of enantiomers with designable chirality, which is one of the most important topics in modern chemistry.
金属手性纳米粒子(CNPs)有望作为不对称催化剂发挥作用,但缺乏对源于亚稳手性晶格的光学活性热稳定性的重要研究。在这项工作中,对通过掠角沉积(GLAD)制备的银(Ag)CNPs进行退火处理,发现在200°C时光学活性消失,这主要归因于手性晶格向非手性晶格的转变。通过逐层GLAD与铝(Al)合金化制备二元Ag-Al CNPs,由固态液体组成,其光学活性在700°C时消失,从而显著提高了Ag CNPs的热稳定性。Al原子在主体Ag CNPs中的扩散容易以及来自部分覆盖二元CNPs的Al2O3层的热绝缘有效地阻止了亚稳手性晶格的结构弛豫,这解释了手性晶格热稳定性的显著提高。这是一项开创性的工作,旨在从手性结构和光学活性方面研究决定金属CNPs热稳定性的基本原理。它为将金属CNPs应用于高温不对称催化以加速具有可设计手性的对映体的不对称合成铺平了道路,这是现代化学中最重要的课题之一。