Suppr超能文献

评估哺乳动物细胞中线粒体 DNA 向细胞质中的释放及其随后对固有免疫相关途径的激活。

Assessing Mitochondrial DNA Release into the Cytosol and Subsequent Activation of Innate Immune-related Pathways in Mammalian Cells.

机构信息

Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, Texas.

出版信息

Curr Protoc. 2022 Feb;2(2):e372. doi: 10.1002/cpz1.372.

Abstract

Mitochondria have emerged as key drivers of mammalian innate immune responses, functioning as signaling hubs to trigger inflammation and orchestrating metabolic switches required for phagocyte activation. Mitochondria also contain damage-associated molecular patterns (DAMPs), molecules that share similarity with pathogen-associated molecular patterns (PAMPs) and can engage innate immune sensors to drive inflammation. The aberrant release of mitochondrial DAMPs during cellular stress and injury is an increasingly recognized trigger of inflammatory responses in human diseases. Mitochondrial DNA (mtDNA) is a particularly potent DAMP that engages multiple innate immune sensors, although mounting evidence suggests that cytosolic mtDNA is primarily detected via the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. cGAS and STING are widely expressed in mammalian cells and serve as key regulators of type I interferon and cytokine expression in both infectious and inflammatory diseases. Despite growing roles for the mtDNA-cGAS-STING axis in human disease, assays to quantify mtDNA release into the cytosol and approaches to link mtDNA to cGAS-STING signaling are not standardized, which increases the possibility for experimental artifacts and misinterpretation of data. Here, we present a series of protocols for assaying the release of mtDNA into the cytosol and subsequent activation of innate immune signaling in mammalian cells. We highlight genetic and pharmacological approaches to induce and inhibit mtDNA release from mitochondria. We also describe immunofluorescence microscopy and cellular fractionation assays to visualize morphological changes in mtDNA and quantify mtDNA accumulation in the cytosol. Finally, we include protocols to examine mtDNA-dependent cGAS-STING activation by RT-qPCR and western blotting. These methods can be performed with standard laboratory equipment and are highly adaptable to a wide range of mammalian cell types. They will permit researchers working across the spectrum of biological and biomedical sciences to accurately and reproducibly measure cytosolic mtDNA release and resulting innate immune responses. © 2022 Wiley Periodicals LLC. Basic Protocol 1: siRNA-mediated knockdown of TFAM to induce mtDNA instability, cytosolic release, and activation of the cGAS-STING pathway Alternate Protocol: Pharmacological induction of mtDNA release and cGAS-STING activation using ABT-737 and Q-VD-OPH Basic Protocol 2: Isolation and quantitation of DNA from cytosolic, mitochondrial, and nuclear fractions Basic Protocol 3: Pharmacological inhibition of mtDNA replication and release.

摘要

线粒体已成为哺乳动物先天免疫反应的关键驱动因素,作为信号枢纽发挥作用,触发炎症,并协调吞噬细胞激活所需的代谢转换。线粒体还含有损伤相关分子模式(DAMPs),这些分子与病原体相关分子模式(PAMPs)具有相似性,可以与先天免疫传感器结合,从而引发炎症。在细胞应激和损伤过程中线粒体 DAMPs 的异常释放是人类疾病中炎症反应的一个日益被认可的触发因素。线粒体 DNA(mtDNA)是一种特别有效的 DAMPs,它与多种先天免疫传感器相互作用,尽管越来越多的证据表明细胞质 mtDNA 主要通过环鸟苷酸-腺苷酸合酶-干扰素基因刺激物(cGAS-STING)途径来检测。cGAS 和 STING 在哺乳动物细胞中广泛表达,是感染和炎症性疾病中 I 型干扰素和细胞因子表达的关键调节剂。尽管 mtDNA-cGAS-STING 轴在人类疾病中的作用不断增加,但用于量化 mtDNA 释放到细胞质中的测定方法以及将 mtDNA 与 cGAS-STING 信号联系起来的方法尚未标准化,这增加了实验假象和数据误解的可能性。在这里,我们提出了一系列测定哺乳动物细胞中线粒体 DNA 释放到细胞质中并随后激活先天免疫信号的方案。我们强调了诱导和抑制 mtDNA 从线粒体释放的遗传和药理学方法。我们还描述了免疫荧光显微镜和细胞分级分离测定法,以观察 mtDNA 的形态变化并量化细胞质中 mtDNA 的积累。最后,我们包括通过 RT-qPCR 和 Western blot 检查 mtDNA 依赖性 cGAS-STING 激活的方案。这些方法可以使用标准实验室设备进行,并且非常适合各种哺乳动物细胞类型。它们将使从事生物学和生物医学科学各个领域的研究人员能够准确和可重复地测量细胞质 mtDNA 释放和由此产生的先天免疫反应。© 2022 年威利父子公司。基础方案 1:siRNA 介导的 TFAM 敲低诱导 mtDNA 不稳定性、细胞质释放和 cGAS-STING 途径的激活备选方案 1:使用 ABT-737 和 Q-VD-OPH 诱导 mtDNA 释放和 cGAS-STING 激活备选方案 2:药理学抑制 mtDNA 复制和释放。

相似文献

2
Mitochondrial DNA leakage induces odontoblast inflammation via the cGAS-STING pathway.
Cell Commun Signal. 2021 May 20;19(1):58. doi: 10.1186/s12964-021-00738-7.
4
Cytosolic mtDNA-cGAS-STING axis contributes to sepsis-induced acute kidney injury via activating the NLRP3 inflammasome.
Clin Exp Nephrol. 2024 May;28(5):375-390. doi: 10.1007/s10157-023-02448-5. Epub 2024 Jan 19.
6
Mitochondrial Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney Injury.
Cell Rep. 2019 Oct 29;29(5):1261-1273.e6. doi: 10.1016/j.celrep.2019.09.050.
8
iNOS aggravates pressure overload-induced cardiac dysfunction via activation of the cytosolic-mtDNA-mediated cGAS-STING pathway.
Theranostics. 2023 Jul 24;13(12):4229-4246. doi: 10.7150/thno.84049. eCollection 2023.
9
Morphine induces inflammatory responses via both TLR4 and cGAS-STING signaling pathways.
Cytokine. 2024 Nov;183:156737. doi: 10.1016/j.cyto.2024.156737. Epub 2024 Aug 31.
10
[Mitochondrial DNA and cGAS-STING Innate Immune Signaling Pathway: Latest Research Progress].
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 May;52(3):387-395. doi: 10.12182/20210560501.

引用本文的文献

1
Mitochondrial complex IV remodeling in tumor-associated macrophages amplifies interferon signaling and promotes anti-tumor immunity.
Immunity. 2025 Jul 8;58(7):1670-1687.e12. doi: 10.1016/j.immuni.2025.06.006. Epub 2025 Jun 30.
3
Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances.
Signal Transduct Target Ther. 2025 Jun 11;10(1):190. doi: 10.1038/s41392-025-02253-4.
5
Mitochondrial DNA signals driving immune responses: Why, How, Where?
Cell Commun Signal. 2025 Apr 22;23(1):192. doi: 10.1186/s12964-025-02042-0.
7
Unraveling the triad of immunotherapy, tumor microenvironment, and skeletal muscle biomechanics in oncology.
Front Immunol. 2025 Apr 2;16:1572821. doi: 10.3389/fimmu.2025.1572821. eCollection 2025.
8
Distinct pathogenic mutations in ARF1 allow dissection of its dual role in cGAS-STING signalling.
EMBO Rep. 2025 May;26(9):2232-2261. doi: 10.1038/s44319-025-00423-7. Epub 2025 Mar 24.
9
RBM43 controls PGC1α translation and a PGC1α-STING signaling axis.
Cell Metab. 2025 Mar 4;37(3):742-757.e8. doi: 10.1016/j.cmet.2025.01.013. Epub 2025 Feb 17.
10
Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders.
J Neuroinflammation. 2025 Feb 7;22(1):34. doi: 10.1186/s12974-025-03363-0.

本文引用的文献

2
Cellular pyrimidine imbalance triggers mitochondrial DNA-dependent innate immunity.
Nat Metab. 2021 May;3(5):636-650. doi: 10.1038/s42255-021-00385-9. Epub 2021 Apr 26.
3
Loss of Mitochondrial Protease CLPP Activates Type I IFN Responses through the Mitochondrial DNA-cGAS-STING Signaling Axis.
J Immunol. 2021 Apr 15;206(8):1890-1900. doi: 10.4049/jimmunol.2001016. Epub 2021 Mar 17.
4
Eltrombopag directly inhibits BAX and prevents cell death.
Nat Commun. 2021 Feb 18;12(1):1134. doi: 10.1038/s41467-021-21224-1.
5
Molecular mechanisms and cellular functions of cGAS-STING signalling.
Nat Rev Mol Cell Biol. 2020 Sep;21(9):501-521. doi: 10.1038/s41580-020-0244-x. Epub 2020 May 18.
6
Mitochondrial DNA in inflammation and immunity.
EMBO Rep. 2020 Apr 3;21(4):e49799. doi: 10.15252/embr.201949799. Epub 2020 Mar 23.
7
VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease.
Science. 2019 Dec 20;366(6472):1531-1536. doi: 10.1126/science.aav4011. Epub 2019 Dec 19.
8
DAMP-sensing receptors in sterile inflammation and inflammatory diseases.
Nat Rev Immunol. 2020 Feb;20(2):95-112. doi: 10.1038/s41577-019-0215-7. Epub 2019 Sep 26.
9
The cGAS-cGAMP-STING Pathway: A Molecular Link Between Immunity and Metabolism.
Diabetes. 2019 Jun;68(6):1099-1108. doi: 10.2337/dbi18-0052.
10
Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3.
Mol Cell. 2019 Apr 4;74(1):19-31.e7. doi: 10.1016/j.molcel.2019.02.013. Epub 2019 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验