Department of Computer Science, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China.
Peng Cheng Laboratory, Shenzhen, China.
J Biomed Inform. 2022 Mar;127:104011. doi: 10.1016/j.jbi.2022.104011. Epub 2022 Feb 15.
Automatic medical event prediction (MEP), e.g. diagnosis prediction, medication prediction, using electronic health records (EHRs) is a popular research direction in health informatics. In many cases, MEP relies on the determinations from different types of medical events, which demonstrates the heterogeneous nature of EHRs. However, most existing methods for MEP fail to distinguishingly model the type of event that is highly associated with the prediction task, i.e. task-wise event, which usually plays a more significant role than other events. In this paper, we proposed a Long Short-Term Memory network (LSTM)-based method for MEP, named Multi-Channel Fusion LSTM (MCF-LSTM), which models the correlations between different types of medical events using multiple network channels. To this end, we designed a task-wise fusion module, in which a gated network is applied to select how much information can be transferred between events. Furthermore, the irregular temporal interval between adjacent medical visits is also modeled in an individual channel, which is combined with other events in a unified manner. We compared MCF-LSTM with state-of-the-art methods on four MEP tasks on two public datasets: MIMIC-III and eICU. Experimental results show that MCF-LSTM achieves promising results on AUC(receiver operating characteristic curve), AUPR (area under the precision-recall curve), and top-k recall, and outperforms other methods with high stability.
自动医学事件预测(MEP),例如诊断预测、药物预测,使用电子健康记录(EHRs)是健康信息学中的一个热门研究方向。在许多情况下,MEP依赖于不同类型的医学事件的确定,这表明 EHRs 的异构性。然而,大多数现有的 MEP 方法都无法区分地对与预测任务高度相关的事件类型进行建模,即任务型事件,它通常比其他事件更重要。在本文中,我们提出了一种基于长短期记忆网络(LSTM)的 MEP 方法,称为多通道融合 LSTM(MCF-LSTM),它使用多个网络通道来建模不同类型的医学事件之间的相关性。为此,我们设计了一个任务型融合模块,其中应用了一个门控网络来选择可以在事件之间传输多少信息。此外,还在单独的通道中对相邻医疗访问之间不规则的时间间隔进行建模,以统一的方式与其他事件进行组合。我们在两个公共数据集 MIMIC-III 和 eICU 上的四个 MEP 任务上比较了 MCF-LSTM 与最先进的方法。实验结果表明,MCF-LSTM 在 AUC(接收器操作特征曲线)、AUPR(精度-召回率曲线下面积)和 top-k 召回率方面取得了有希望的结果,并且具有高度稳定性,优于其他方法。