Suppr超能文献

一种基于端到端长短期记忆网络(LSTM)-注意力机制的准稳态化学交换饱和转移(CEST)预测框架。

An end-to-end LSTM-Attention based framework for quasi-steady-state CEST prediction.

作者信息

Yang Wei, Zou Jisheng, Zhang Xuan, Chen Yaowen, Tang Hanjing, Xiao Gang, Zhang Xiaolei

机构信息

Great Bay University, Dongguan, China.

College of Engineering, Shantou University, Shantou, China.

出版信息

Front Neurosci. 2024 Jan 4;17:1281809. doi: 10.3389/fnins.2023.1281809. eCollection 2023.

Abstract

Chemical exchange saturation transfer (CEST)-magnetic resonance imaging (MRI) often takes prolonged saturation duration (Ts) and relaxation delay (Td) to reach the steady state, and yet the insufficiently long Ts and Td in actual experiments may underestimate the CEST measurement. In this study, we aimed to develop a deep learning-based model for quasi-steady-state (QUASS) prediction from non-steady-state CEST acquired in experiments, therefore overcoming the limitation of the CEST effect which needs prolonged saturation time to reach a steady state. To support network training, a multi-pool Bloch-McConnell equation was designed to derive wide-ranging simulated Z-spectra, so as to solve the problem of time and labor consumption in manual annotation work. Following this, we formulated a hybrid architecture of long short-term memory (LSTM)-Attention to improve the predictive ability. The multilayer perceptron, recurrent neural network, LSTM, gated recurrent unit, BiLSTM, and LSTM-Attention were included in comparative experiments of QUASS CEST prediction, and the best performance was obtained by the proposed LSTM-Attention model. In terms of the linear regression analysis, structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mean-square error (MSE), the results of LSTM-Attention demonstrate that the coefficient of determination in the linear regression analysis was at least  = 0.9748 for six different representative frequency offsets, the mean values of prediction accuracies in terms of SSIM, PSNR and MSE were 0.9991, 49.6714, and 1.68 × 10 for all frequency offsets. It was concluded that the LSTM-Attention model enabled high-quality QUASS CEST prediction.

摘要

化学交换饱和转移(CEST)磁共振成像(MRI)通常需要较长的饱和持续时间(Ts)和弛豫延迟(Td)才能达到稳态,然而实际实验中Ts和Td不够长可能会低估CEST测量值。在本研究中,我们旨在开发一种基于深度学习的模型,用于从实验中获取的非稳态CEST进行准稳态(QUASS)预测,从而克服CEST效应需要较长饱和时间才能达到稳态的局限性。为了支持网络训练,设计了一个多池Bloch-McConnell方程来推导范围广泛的模拟Z谱,以解决手动标注工作中的时间和人力消耗问题。在此基础上,我们构建了一种长短期记忆(LSTM)-注意力混合架构来提高预测能力。多层感知器、递归神经网络、LSTM、门控递归单元、双向LSTM和LSTM-注意力被纳入QUASS CEST预测的对比实验中,所提出的LSTM-注意力模型取得了最佳性能。在线性回归分析、结构相似性指数(SSIM)、峰值信噪比(PSNR)和均方误差(MSE)方面,LSTM-注意力的结果表明,对于六个不同的代表性频率偏移,线性回归分析中的决定系数至少为 = 0.9748,所有频率偏移的SSIM、PSNR和MSE预测准确率的平均值分别为0.9991、49.6714和1.68 × 10。得出的结论是,LSTM-注意力模型能够实现高质量的QUASS CEST预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验