Suppr超能文献

利用视网膜血管图像进行深度学习模型分类的精神分裂症。

Deep learning model using retinal vascular images for classifying schizophrenia.

机构信息

Department of Medical Electronics Engineering, B.M.S. College of Engineering, Bangalore, India.

National Institute of Mental Health and Neurosciences, Bangalore, India.

出版信息

Schizophr Res. 2022 Mar;241:238-243. doi: 10.1016/j.schres.2022.01.058. Epub 2022 Feb 14.

Abstract

Contemporary psychiatric diagnosis still relies on the subjective symptom report of the patient during a clinical interview by a psychiatrist. Given the significant variability in personal reporting and differences in the skill set of psychiatrists, it is desirable to have objective diagnostic markers that could help clinicians differentiate patients from healthy individuals. A few recent studies have reported retinal vascular abnormalities in patients with schizophrenia (SCZ) using retinal fundus images. The goal of this study was to use a trained convolution neural network (CNN) deep learning algorithm to detect SCZ using retinal fundus images. A total of 327 subjects [139 patients with Schizophrenia (SCZ) and 188 Healthy volunteers (HV)] were recruited, and retinal images were acquired using a fundus camera. The images were preprocessed and fed to a convolution neural network for the classification. The model performance was evaluated using the area under the receiver operating characteristic curve (AUC). The CNN achieved an accuracy of 95% for classifying SCZ and HV with an AUC of 0.98. Findings from the current study suggest the potential utility of deep learning to classify patients with SCZ and assist clinicians in clinical settings. Future studies need to examine the utility of the deep learning model with retinal vascular images as biomarkers in schizophrenia with larger sample sizes.

摘要

当代精神病学诊断仍然依赖于精神病医生在临床访谈中对患者主观症状的报告。鉴于个人报告的显著变异性和精神病医生技能水平的差异,人们希望有客观的诊断标志物,可以帮助临床医生将患者与健康个体区分开来。最近有几项研究报告了使用眼底图像的精神分裂症(SCZ)患者视网膜血管异常。本研究的目的是使用经过训练的卷积神经网络(CNN)深度学习算法来使用眼底图像检测 SCZ。共招募了 327 名受试者[139 名精神分裂症(SCZ)患者和 188 名健康志愿者(HV)],并使用眼底相机获取视网膜图像。对图像进行预处理并输入卷积神经网络进行分类。使用接收器工作特征曲线下的面积(AUC)评估模型性能。CNN 对 SCZ 和 HV 的分类准确率为 95%,AUC 为 0.98。本研究的结果表明,深度学习在分类 SCZ 患者和协助临床医生在临床环境中具有潜在的应用价值。未来的研究需要用更大的样本量检查视网膜血管图像作为精神分裂症生物标志物的深度学习模型的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验