Shoeibi Afshin, Ghassemi Navid, Khodatars Marjane, Moridian Parisa, Khosravi Abbas, Zare Assef, Gorriz Juan M, Chale-Chale Amir Hossein, Khadem Ali, Rajendra Acharya U
FPGA Lab, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.
Cogn Neurodyn. 2023 Dec;17(6):1501-1523. doi: 10.1007/s11571-022-09897-w. Epub 2022 Nov 12.
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.
如今,全球许多人患有脑部疾病,他们的健康面临危险。到目前为止,已经提出了许多用于诊断精神分裂症(SZ)和注意力缺陷多动障碍(ADHD)的方法,其中功能磁共振成像(fMRI)模态在医生中是一种流行的方法。本文提出了一种使用新的深度学习方法对静息态功能磁共振成像(rs-fMRI)模态进行SZ和ADHD智能检测的方法。包含SZ和ADHD患者rs-fMRI模态的加利福尼亚大学洛杉矶分校数据集已用于实验。FMRIB软件库工具箱首先对rs-fMRI数据进行预处理。然后,使用具有所提出层数的卷积自动编码器模型从rs-fMRI数据中提取特征。在分类步骤中,引入了一种名为区间二型模糊回归(IT2FR)的新模糊方法,然后通过遗传算法、粒子群优化和灰狼优化(GWO)技术进行优化。此外,将IT2FR方法的结果与多层感知器、k近邻、支持向量机、随机森林、决策树和自适应神经模糊推理系统方法进行了比较。实验结果表明,与其他分类器方法相比,采用GWO优化算法的IT2FR方法取得了令人满意的结果。最后,所提出的分类技术能够提供72.71%的准确率。