Suppr超能文献

人工智能辅助早期检测色素性视网膜炎——最常见的遗传性视网膜变性。

Artificial Intelligence-Assisted Early Detection of Retinitis Pigmentosa - the Most Common Inherited Retinal Degeneration.

机构信息

Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

J Digit Imaging. 2021 Aug;34(4):948-958. doi: 10.1007/s10278-021-00479-6. Epub 2021 Jul 9.

Abstract

The purpose of this study was to detect the presence of retinitis pigmentosa (RP) based on color fundus photographs using a deep learning model. A total of 1670 color fundus photographs from the Taiwan inherited retinal degeneration project and National Taiwan University Hospital were acquired and preprocessed. The fundus photographs were labeled RP or normal and divided into training and validation datasets (n = 1284) and a test dataset (n = 386). Three transfer learning models based on pre-trained Inception V3, Inception Resnet V2, and Xception deep learning architectures, respectively, were developed to classify the presence of RP on fundus images. The model sensitivity, specificity, and area under the receiver operating characteristic (AUROC) curve were compared. The results from the best transfer learning model were compared with the reading results of two general ophthalmologists, one retinal specialist, and one specialist in retina and inherited retinal degenerations. A total of 935 RP and 324 normal images were used to train the models. The test dataset consisted of 193 RP and 193 normal images. Among the three transfer learning models evaluated, the Xception model had the best performance, achieving an AUROC of 96.74%. Gradient-weighted class activation mapping indicated that the contrast between the periphery and the macula on fundus photographs was an important feature in detecting RP. False-positive results were mostly obtained in cases of high myopia with highly tessellated retina, and false-negative results were mostly obtained in cases of unclear media, such as cataract, that led to a decrease in the contrast between the peripheral retina and the macula. Our model demonstrated the highest accuracy of 96.00%, which was comparable with the average results of 81.50%, of the other four ophthalmologists. Moreover, the accuracy was obtained at the same level of sensitivity (95.71%), as compared to an inherited retinal disease specialist. RP is an important disease, but its early and precise diagnosis is challenging. We developed and evaluated a transfer-learning-based model to detect RP from color fundus photographs. The results of this study validate the utility of deep learning in automating the identification of RP from fundus photographs.

摘要

本研究旨在通过深度学习模型从眼底彩色照片中检测视网膜色素变性(RP)的存在。共获取并预处理了来自台湾遗传性视网膜变性项目和台湾大学医院的 1670 张眼底彩色照片。这些眼底照片被标记为 RP 或正常,并分为训练和验证数据集(n=1284)和测试数据集(n=386)。分别基于预训练的 Inception V3、Inception Resnet V2 和 Xception 深度学习架构开发了三个迁移学习模型,以对眼底图像中 RP 的存在进行分类。比较了模型的灵敏度、特异性和受试者工作特征曲线下面积(AUROC)。将最佳迁移学习模型的结果与两名普通眼科医生、一名视网膜专家和一名视网膜和遗传性视网膜变性专家的阅读结果进行了比较。共有 935 张 RP 和 324 张正常图像用于训练模型。测试数据集由 193 张 RP 和 193 张正常图像组成。在评估的三个迁移学习模型中,Xception 模型的性能最佳,AUROC 为 96.74%。梯度加权类激活映射表明,眼底照片中外周与黄斑之间的对比度是检测 RP 的一个重要特征。假阳性结果主要出现在高度格子状视网膜的高度近视病例中,而假阴性结果主要出现在白内障等导致周边视网膜与黄斑之间对比度降低的不清晰介质病例中。我们的模型显示出最高的准确性为 96.00%,与其他四名眼科医生的平均结果 81.50%相当。此外,与遗传性视网膜疾病专家相比,该模型的准确性在相同的灵敏度水平(95.71%)下获得。RP 是一种重要的疾病,但早期和准确的诊断具有挑战性。我们开发并评估了一种基于迁移学习的模型,用于从眼底彩色照片中检测 RP。本研究的结果验证了深度学习在自动化识别眼底照片中的 RP 方面的实用性。

相似文献

1
Artificial Intelligence-Assisted Early Detection of Retinitis Pigmentosa - the Most Common Inherited Retinal Degeneration.
J Digit Imaging. 2021 Aug;34(4):948-958. doi: 10.1007/s10278-021-00479-6. Epub 2021 Jul 9.
3
4
Estimation of Visual Function Using Deep Learning From Ultra-Widefield Fundus Images of Eyes With Retinitis Pigmentosa.
JAMA Ophthalmol. 2023 Apr 1;141(4):305-313. doi: 10.1001/jamaophthalmol.2022.6393.
5
Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.
Lancet Digit Health. 2021 Aug;3(8):e486-e495. doi: 10.1016/S2589-7500(21)00086-8.
6
Deep Learning Automated Detection of Reticular Pseudodrusen from Fundus Autofluorescence Images or Color Fundus Photographs in AREDS2.
Ophthalmology. 2020 Dec;127(12):1674-1687. doi: 10.1016/j.ophtha.2020.05.036. Epub 2020 May 21.
7
Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs.
Ophthalmology. 2018 Aug;125(8):1199-1206. doi: 10.1016/j.ophtha.2018.01.023. Epub 2018 Mar 2.
8
Automatic segmentation of pigment deposits in retinal fundus images of Retinitis Pigmentosa.
Comput Med Imaging Graph. 2018 Jun;66:73-81. doi: 10.1016/j.compmedimag.2018.03.002. Epub 2018 Mar 17.
10
Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images.
Br J Ophthalmol. 2023 Jan;107(1):90-95. doi: 10.1136/bjophthalmol-2021-319030. Epub 2021 Aug 3.

引用本文的文献

1
Deep learning-based classification of multiple fundus diseases using ultra-widefield images.
Front Cell Dev Biol. 2025 Jul 17;13:1630667. doi: 10.3389/fcell.2025.1630667. eCollection 2025.
3
A deep learning model for diagnosis of inherited retinal diseases.
Sci Rep. 2025 Jul 2;15(1):22523. doi: 10.1038/s41598-025-04648-3.
5
Enhancing Ophthalmic Diagnosis and Treatment with Artificial Intelligence.
Medicina (Kaunas). 2025 Feb 28;61(3):433. doi: 10.3390/medicina61030433.
6
Utility of multimodal imaging in the clinical diagnosis of inherited retinal degenerations.
Taiwan J Ophthalmol. 2024 Dec 3;14(4):486-496. doi: 10.4103/tjo.TJO-D-24-00066. eCollection 2024 Oct-Dec.
7
Role of Artificial Intelligence in Retinal Diseases.
Klin Monbl Augenheilkd. 2024 Sep;241(9):1023-1031. doi: 10.1055/a-2378-6138. Epub 2024 Sep 16.
8
Quickly diagnosing Bietti crystalline dystrophy with deep learning.
iScience. 2024 Jul 25;27(9):110579. doi: 10.1016/j.isci.2024.110579. eCollection 2024 Sep 20.
9
Cataract surgery in retinitis pigmentosa.
Med Hypothesis Discov Innov Ophthalmol. 2024 Aug 14;13(2):96-103. doi: 10.51329/mehdiophthal1500. eCollection 2024 Summer.
10
Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review.
Ophthalmol Ther. 2024 Aug;13(8):2125-2149. doi: 10.1007/s40123-024-00981-4. Epub 2024 Jun 24.

本文引用的文献

1
Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease.
Curr Opin Ophthalmol. 2020 May;31(3):147-154. doi: 10.1097/ICU.0000000000000660.
4
Artificial intelligence and deep learning in ophthalmology.
Br J Ophthalmol. 2019 Feb;103(2):167-175. doi: 10.1136/bjophthalmol-2018-313173. Epub 2018 Oct 25.
5
Gene therapy for RPE65-related retinal disease.
Ophthalmic Genet. 2018 Dec;39(6):671-677. doi: 10.1080/13816810.2018.1533027. Epub 2018 Oct 18.
6
Deep learning for the segmentation of preserved photoreceptors on optical coherence tomography in two inherited retinal diseases.
Biomed Opt Express. 2018 Jun 12;9(7):3092-3105. doi: 10.1364/BOE.9.003092. eCollection 2018 Jul 1.
7
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.
Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.
8
Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks.
JAMA Ophthalmol. 2017 Nov 1;135(11):1170-1176. doi: 10.1001/jamaophthalmol.2017.3782.
9
Deep-learning based, automated segmentation of macular edema in optical coherence tomography.
Biomed Opt Express. 2017 Jun 23;8(7):3440-3448. doi: 10.1364/BOE.8.003440. eCollection 2017 Jul 1.
10
Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera.
BMC Ophthalmol. 2017 Jun 13;17(1):89. doi: 10.1186/s12886-017-0484-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验