Suppr超能文献

全基因组功能筛选可预测在解脂耶氏酵母中具有高活性的 CRISPR-Cas9 和 -Cas12a 向导。

Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica.

机构信息

Department of Computer Science and Engineering, University of California, Riverside, CA, 92521, USA.

Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA.

出版信息

Nat Commun. 2022 Feb 17;13(1):922. doi: 10.1038/s41467-022-28540-0.

Abstract

Genome-wide functional genetic screens have been successful in discovering genotype-phenotype relationships and in engineering new phenotypes. While broadly applied in mammalian cell lines and in E. coli, use in non-conventional microorganisms has been limited, in part, due to the inability to accurately design high activity CRISPR guides in such species. Here, we develop an experimental-computational approach to sgRNA design that is specific to an organism of choice, in this case the oleaginous yeast Yarrowia lipolytica. A negative selection screen in the absence of non-homologous end-joining, the dominant DNA repair mechanism, was used to generate single guide RNA (sgRNA) activity profiles for both SpCas9 and LbCas12a. This genome-wide data served as input to a deep learning algorithm, DeepGuide, that is able to accurately predict guide activity. DeepGuide uses unsupervised learning to obtain a compressed representation of the genome, followed by supervised learning to map sgRNA sequence, genomic context, and epigenetic features with guide activity. Experimental validation, both genome-wide and with a subset of selected genes, confirms DeepGuide's ability to accurately predict high activity sgRNAs. DeepGuide provides an organism specific predictor of CRISPR guide activity that with retraining could be applied to other fungal species, prokaryotes, and other non-conventional organisms.

摘要

全基因组功能遗传筛选已成功用于发现基因型-表型关系,并用于设计新的表型。虽然在哺乳动物细胞系和大肠杆菌中得到了广泛应用,但由于无法在这些物种中准确设计高活性的 CRISPR 向导,因此在非常规微生物中的应用受到了限制。在这里,我们开发了一种针对特定生物体的 sgRNA 设计的实验计算方法,在这种情况下,该生物体是产油酵母 Yarrowia lipolytica。在不存在非同源末端连接(占主导地位的 DNA 修复机制)的情况下,我们使用负选择筛选来生成 SpCas9 和 LbCas12a 的单指导 RNA(sgRNA)活性谱。该全基因组数据作为输入,用于深度学习算法 DeepGuide,该算法能够准确预测指导活性。DeepGuide 使用无监督学习来获取基因组的压缩表示,然后使用监督学习来映射 sgRNA 序列、基因组上下文和与指导活性相关的表观遗传特征。通过全基因组和部分选定基因的实验验证,证实了 DeepGuide 准确预测高活性 sgRNA 的能力。DeepGuide 提供了一种针对 CRISPR 指导活性的特定于生物体的预测器,经过重新训练,可以应用于其他真菌、原核生物和其他非常规生物体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485b/8854577/45658ea84979/41467_2022_28540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验