Suppr超能文献

用于心律失常自动检测的多信息融合神经网络。

Multi-information fusion neural networks for arrhythmia automatic detection.

作者信息

Chen Aiyun, Wang Fei, Liu Wenhan, Chang Sheng, Wang Hao, He Jin, Huang Qijun

机构信息

School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

出版信息

Comput Methods Programs Biomed. 2020 Sep;193:105479. doi: 10.1016/j.cmpb.2020.105479. Epub 2020 Apr 29.

Abstract

BACKGROUND AND OBJECTIVES

. The electrocardiograms (ECGs) are widely used to diagnose a variety of arrhythmias. Generally, the abnormalities of ECG signals mainly consist of ill-shaped ECG beat morphologies and irregular intervals. The ill-shaped ECG beat morphologies represent morphological information, while the irregular intervals denote the temporal information of ECG signals. But it is difficult to utilize morphological information and temporal information simultaneously when dealing with single ECG heartbeats, because RR interval is not contained in a single short heartbeat. Therefore, to handle this problems, a novel Multi-information Fusion Convolutional Bidirectional Recurrent Neural Network (MF-CBRNN) is proposed for arrhythmia automatic detection.

METHODS

. The MF-CBRNN is designed with two parallel hybrid branches that can simultaneously focus on the beat-based information in the ECG beats and the segment-based information in the adjacent segments of the beats. A single ECG beat provides the morphological information. At the same time, the adjacent segment of the ECG beat enriches the temporal information, so the two branches are designed to exploit the multiple information contained in ECGs. Furthermore, a combination of convolutional neural networks (CNNs) and a bidirectional long short memory (BLSTM) in each branch is utilized to capture the information from the two inputs. And all the features extracted from the two branches are fused for information aggregation.

RESULTS

. To evaluate the performance of the proposed model, the ECG signals from MIT-BIH databases are used for intra-patient and inter-patient paradigms. The proposed model yields an accuracy of 99.56% and an F1-score of 96.40% under the intra-patient paradigm. And it obtains an overall accuracy of 96.77% and F1-score of 77.83% under the inter-patient paradigm.

CONCLUSIONS

. Compared with other studies on arrhythmia detection, our method achieves a state-of-the-art performance. It indicates that the proposed model is a promising arrhythmia detection algorithm for computer-aided diagnostic systems.

摘要

背景与目的

心电图(ECG)被广泛用于诊断各种心律失常。一般来说,ECG信号异常主要包括形态异常的ECG搏动形态和不规则的间期。形态异常的ECG搏动形态代表形态学信息,而不规则间期表示ECG信号的时间信息。但是在处理单个ECG心跳时,很难同时利用形态学信息和时间信息,因为单个短心跳中不包含RR间期。因此,为了解决这个问题,提出了一种用于心律失常自动检测的新型多信息融合卷积双向递归神经网络(MF-CBRNN)。

方法

MF-CBRNN设计有两个并行的混合分支,可同时关注ECG搏动中基于搏动的信息和搏动相邻段中基于段的信息。单个ECG搏动提供形态学信息。同时,ECG搏动的相邻段丰富了时间信息,因此设计这两个分支来利用ECG中包含的多种信息。此外,每个分支中使用卷积神经网络(CNN)和双向长短期记忆(BLSTM)的组合来从两个输入中捕获信息。并且将从两个分支提取的所有特征进行融合以进行信息聚合。

结果

为了评估所提出模型的性能,使用来自麻省理工学院-布列根和妇女医院(MIT-BIH)数据库的ECG信号进行患者内和患者间范式研究。在所提出的模型在患者内范式下的准确率为99.56%,F1分数为96.40%。在患者间范式下,它获得了96.77%的总体准确率和77.83%的F1分数。

结论

与其他心律失常检测研究相比,我们的方法取得了领先的性能。这表明所提出的模型是一种用于计算机辅助诊断系统的有前途的心律失常检测算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验